精英家教网 > 高中数学 > 题目详情
10.若$\frac{m+i}{1+i}=i$(i为虚数单位),则实数m=-1.

分析 由复数代数形式的乘除运算化简,然后利用复数相等的条件列式求得m值.

解答 解:由$\frac{m+i}{1+i}=i$,得
$\frac{(m+i)(1-i)}{(1+i)(1-i)}=\frac{m+1}{2}+\frac{1-m}{2}i=i$,
即$\left\{\begin{array}{l}{m+1=0}\\{1-m=2}\end{array}\right.$,m=-1.
故答案为:-1.

点评 本题考查了复数代数形式的乘除运算,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.在2014年APEC领导人会议期间,被人们亲切叫做“蓝精灵”的大学生志愿者参与服务,已知志愿者中专科生、本科生、硕士生、博士生的人数比例为5:15:9:1,拟采用分层抽样的方法,从志愿者中抽取一个120人的样本进行调查,则应从硕士生中抽取36名.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.a为正实数,i是虚数单位,|$\frac{a-i}{i}$|=2,则a=(  )
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图:在多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AD=AC=AB=$\frac{1}{2}$DE=1,∠DAC=90°,F是CD的中点.
(Ⅰ)求证:AF∥平面BCE;
(Ⅱ)求证:平面BCE⊥平面CDE;
(Ⅲ)求三棱锥D-BCE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若函数f(x)=sin$\frac{ωx}{2}sin\frac{π+ωx}{2}({ω>0})$的最小正周期为π,则ω=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=cos2x,g(x)=$\frac{1}{2}+\sqrt{3}$sinxcosx.
(1)若直线x=a是函数y=f(x)的图象的一条对称轴,求g(2a)的值;
(2)若0≤x≤$\frac{π}{2}$,求h(x)=f(x)+g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在空间,下列命题中不正确的是(  )
A.如果两个平面有一个公共点,那么它们还有其他公共点
B.若已知四个点不共面,则其中任意三个点也不共面
C.若点A既在平面α内又在平面β内,则点A在平面α与平面β的交线上
D.若两点A、B既在直线l上又在平面α内,则l在平面α内

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设x,y满足约束条件$\left\{\begin{array}{l}3x-y-2≤0\\ x-y≥0\\ x≥0,y≥0\end{array}\right.$,若目标函数 $z=x+\frac{m}{2}y(m>0)$的最大值为2,则$y=sin(mx+\frac{π}{3})$的图象向右平移$\frac{π}{6}$后的表达式为(  )
A.$y=sin(2x+\frac{π}{6})$B.$y=sin(x+\frac{π}{6})$C.y=sin2xD.$y=sin(2x+\frac{2π}{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在四棱锥P-ABCD中,AD⊥平面PDC,PD⊥DC,底面ABCD是梯形,AB∥DC,AB=AD=PD=1,CD=2
(1)求证:平面PBC⊥平面PBD;
(2)设Q为棱PC上一点,$\overrightarrow{PQ}$=λ$\overrightarrow{PC}$,试确定 λ的值使得二面角Q-BD-P为60°.

查看答案和解析>>

同步练习册答案