精英家教网 > 高中数学 > 题目详情
7.在同一坐标系中,将曲线y=2sin3x变为曲线y'=sinx'的伸缩变换是(  )
A.$\left\{{\begin{array}{l}{x=3x'}\\{y=\frac{1}{2}y'}\end{array}}\right.$B.$\left\{{\begin{array}{l}{x'=3x}\\{y'=\frac{1}{2}y}\end{array}}\right.$C.$\left\{{\begin{array}{l}{x=3x'}\\{y=2y'}\end{array}}\right.$D.$\left\{{\begin{array}{l}{x'=3x}\\{y'=2y}\end{array}}\right.$

分析 先设出在伸缩变换前后的坐标,对比曲线变换前后的解析式就可以求出此伸缩变换.

解答 解:设曲线y=sinx上任意一点(x′,y′),变换前的坐标为(x,y)
根据曲线y=2sin3x变为曲线y′=sinx′
∴伸缩变换为$\left\{{\begin{array}{l}{x'=3x}\\{y'=\frac{1}{2}y}\end{array}}\right.$,
故选B.

点评 本题主要考查了伸缩变换的有关知识,以及图象之间的联系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.设数列{an}的前n项和为Sn,已知a1=1,${a_{n+1}}=\frac{n+2}{n}{S_n}$(n∈N*).
(1)证明:数列$\left\{{\frac{S_n}{n}}\right\}$是等比数列;
(2)求数列{Sn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在某商业区周边有两条公路l1和l2,在点O处交汇;该商业区为圆心角$\frac{π}{3}$、半径3km的扇形.现规划在该商业区外修建一条公路AB,与l1,l2分别交于A,B,要求AB与扇形弧相切,切点T不在l1,l2上.
(1)设OA=akm,OB=bkm试用a,b表示新建公路AB的长度,求出a,b满足的关系式,并写出a,b的范围;
(2)设∠AOT=α,试用α表示新建公路AB的长度,并且确定A,B的位置,使得新建公路AB的长度最短.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数$y=\sqrt{16-{4}^{x}}$的值域是(  )
A.(0,4)B.(-∞,4)C.(4,+∞)D.[0,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某教育机构为了解本地区高三学生上网的情况,随机抽取了100名学生进行调查.下面是根据调查结果绘制的学生每天上网时间的频率分布直方图:将每天上网时间不低于40分钟的学生称为“上网迷”.
(1)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“上网迷“与性别有关?
非上网迷上网迷合计
1055
合计
(2)将上述调查所得到的频率视为概率.现在从该地区大量高三学生中,采用随机抽样方法每次抽取1名学生,抽取3次,记被抽取的3名学生中的“上网迷”人数为X.若每次抽取的结果是相互独立的,求X=2的概率.
附:X2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{({n}_{11}+{n}_{12})({n}_{21}+{n}_{22})({n}_{11}+{n}_{21})({n}_{12}+{n}_{22})}$,
P(X2≥k)0.050.01
k3.8416.635

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知$sinα=\frac{4}{5},α∈({0,π})$,则tanα=±$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若直线a2x+y+7=0和直线x-2ay+1=0垂直,则实数a的值为0或2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.阅读下列程序:如果输入x=-2,则输出的结果y为(  )
A.0B.-1C.-2D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)化简:$\frac{{cos(θ+π)×{{sin}^2}(θ+3π)}}{{tan(θ+4π)×tan(π+θ)×{{cos}^3}(-π-θ)}}$
(2)求值:$\frac{{\sqrt{1-2sin{{10}°}cos{{10}°}}}}{{cos{{10}°}-\sqrt{1-{{cos}^2}{{170}°}}}}$.

查看答案和解析>>

同步练习册答案