精英家教网 > 高中数学 > 题目详情
4.已知(1+x)+(1+x)2+(1+x)3+…+(1+x)n展开式中x4的系数为C${\;}_{11}^{6}$,求n的值.

分析 求出(1+x)n中含x4项的系数是Cn4,再利用二项式系数的性质求和.

解答 解:(1+x)n中含x4项的系数是Cn4
所以,所求展开式中含x4项的系数是:
C44+C54+…+Cn4=C55+C54+…+Cn4=Cn+15=C${\;}_{11}^{6}$,
∴n=10

点评 本题考查利用二项式定理求指定项的系数,二项式系数的性质.牢记基本定理、性质是前提、计算准确是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.设变量x,y满足约束条件$\left\{\begin{array}{l}y≥x\\ x+3y≤4\\ x≥-2\end{array}\right.$则z=|x-3y|的取值范围为(  )
A.[2,8]B.[0,8]C.[4,8]D.[0,4]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设△ABC的三内角A、B、C所对应的边分别为a、b、c,函数f(x)=cosx+sin(x-$\frac{π}{6}$),且f(A)=1.
(Ⅰ)求A的大小;
(Ⅱ)若a=1,求$\frac{1}{b}$$+\frac{1}{c}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数$f(x)=\frac{{sinx+cosx+|{sinx-cosx}|}}{2}$,则下列结论正确的是(  )
A.f(x)是奇函数B.f(x)在$[{0,\frac{π}{2}}]$上递增C.f(x)是周期函数D.f(x)的值域为[-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知F1、F2为双曲线C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$的左、右焦点,P为双曲线C右支上一点,且PF2⊥F1F2,PF1与y轴交于点Q,点M满足$\overrightarrow{{F}_{1}M}$=3$\overrightarrow{M{F}_{2}}$,若MQ⊥PF1,则双曲线C的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{\sqrt{2}+\sqrt{3}}{2}$D.$\frac{\sqrt{2}+\sqrt{6}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}中,a1=$\frac{1}{2}$,Sn=n2an(n∈N*
(1)求a2、a3、a4的值;
(2)推出数列{an}的通项公式,并用数学归纳法加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在复平面内,复数$z=\frac{i}{2+i}$对应的点所在的象限是(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源:2017届云南曲靖市高三上半月考一数学试卷(解析版) 题型:解答题

已知函数.

(1)当时,求函数的定义域;

(2)若关于的不等式的解集是,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{bn}满足3(n+1)bn=nbn+1,且b1=3.
(1)求数列{bn}的通项公式;
(2)已知$\frac{{a}_{n}}{{b}_{n}}$=$\frac{n+1}{2n+3}$,求证:$\frac{5}{6}$≤$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$<1$\end{array}$.

查看答案和解析>>

同步练习册答案