精英家教网 > 高中数学 > 题目详情
14.从六个数1,3,4,6,7,9中任取4个数,则这四个数的平均数是5的概率为(  )
A.$\frac{1}{20}$B.$\frac{1}{15}$C.$\frac{1}{5}$D.$\frac{1}{6}$

分析 从六个数1,3,4,6,7,9中任取4个数,先求出基本事件总数,再用列举法求出这四个数的平均数是5包含的基本事件个数,由此能求出这四个数的平均数是5的概率.

解答 解:从六个数1,3,4,6,7,9中任取4个数,
基本事件总数为${C}_{6}^{4}$=15,
这四个数的平均数是5包含的基本事件有:
(1,3,7,9),(1,4,6,9),(3,4,6,7),共3种,
∴这四个数的平均数是5的概率为p=$\frac{3}{15}$=$\frac{1}{5}$.
故选:C.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.如图茎叶图表示的是甲乙两个篮球队在3次不同比赛中的得分情况,其中有一个数字模糊不清,在图中以m表示,若甲队的平均得分不低于乙队的平均得分,那么m的可能取值集合为(  )
A.{2}B.{1,2}C.{0,1,2}D.{2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.随着旅游观念的转变和旅游业的发展,国民在旅游休闲方面的投入不断增多,民众对旅游的需求也在不断提高.某村村委会统计了2011到2015年五年间每年春节期间外出旅游的家庭数,具体统计数据如表所示:
年份(x)20112012201320142015
家庭数(y) 610182226
(1)从这5年中随机抽取两年,求外出旅游的家庭数至少有1年多于20个的概率;
(2)利用所给数据,求出春节期间外出旅游的家庭数与年份之间的回归直线方程$\widehat y$=bx+a,
并判断它们之间是正相关还是负相关;
(3)利用(2)中所求出的直线方程估计该村2018年在春节期间外出游泳的家庭数.
参考:用最小二乘法求线性回归方程系数公式$\widehat b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}},\widehat a=\overline y-\widehat b\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.△ABC是以角C为直角的等腰直角三角形,AC=2,点H位于AB边上,沿CH折叠△ABC,若折叠过程中始终有AB⊥CH,则三棱锥H-ABC的体积最大值为$\frac{\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.按如下程序框图,若输出的结果为170,试判断框内应补充的条件为(  )
A.i>9B.i≥9C.i>11D.i≥11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数f(x)=ax+b-xlnx(a>0),g(x)=$\frac{2x}{1+{x}^{2}}$,若直线y=e-x是曲线C:y=f(x)的一条切线,其中e是自然对数的底数,且f(1)=1
(I)求a,b的值.
(Ⅱ)设0<n<m<1,证明:f(m)>g(n)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=x2+ax+b(a,b∈R),对于任意实数a,总存在实数m,当x∈[m,m+1]时,使得f(x)≤0恒成立,则b的取值范围为b≤-$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设集合A={x|(1-x)(1+x)≥0},集合B={y|y=2x,x<0},则A∩B=(  )
A.(-1,1]B.[-1,1]C.(0,1)D.[-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}中,对任意n∈N*,an+1=4an3-3an
(1)求证:若|an|>1,则|an+1|>1;
(2)若存在正整数m,使得am=1,求证:
①|a1|≤1;
②a1=cos$\frac{2kπ}{{3}^{m-1}}$(其中k∈Z)(参考公式:cos3α=4cos3α-3cosα)

查看答案和解析>>

同步练习册答案