分析 (Ⅰ)当a=4时,把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.
(Ⅱ)利用绝对值三角不等式求得f(x)的最小值为|a-1|,再根据|a-1|≥5,求得a的取值范围.
解答 解:(Ⅰ)当a=4时,求不等式f(x)≥6,即|x-1|+|x-a|=|x-1|+|x-4|≥6,
∴$\left\{\begin{array}{l}{x<1}\\{1-x+4-x≥6}\end{array}\right.$①,或$\left\{\begin{array}{l}{1≤x≤4}\\{x-1+4-x≥6}\end{array}\right.$ ②,或$\left\{\begin{array}{l}{x>4}\\{x-1+x-4≥6}\end{array}\right.$ ③.
解①求得x≤-$\frac{1}{2}$,解②求得x∈∅,解③求得 x≥$\frac{11}{2}$,
综上可得,不等式的解集为{|x≤-$\frac{1}{2}$,或 x≥$\frac{11}{2}$}.
(Ⅱ)若f(x)≥5对x∈R恒成立,而f(x)=|x-1|+|x-a|≥|x-1-(x-a)|=|a-1|,
∴|a-1|≥5,即a-1≥5,或 a-1≤-5,求得a≥6,或 a≤-4.
点评 本题主要考查绝对值三角不等式,绝对值不等式的解法,函数的恒成立问题,体现了转化、分类讨论的数学思想,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 3π+6 | B. | 5π+6 | C. | 3π+12 | D. | 5π+12 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 不存在 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{1}{4}$) | B. | (0,$\frac{1}{2}$) | C. | (0,1) | D. | (0,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com