精英家教网 > 高中数学 > 题目详情
正数x,y满足
1
x
+
1
y
=1,则x+2y的最小值=
 
考点:基本不等式
专题:不等式的解法及应用
分析:利用“乘1法”和基本不等式的性质即可得出.
解答: 解:∵正数x,y满足
1
x
+
1
y
=1,
∴x+2y=(x+2y)(
1
x
+
1
y
)
=3+
2y
x
+
x
y
≥3+2
2y
x
x
y
=3+2
2
,当且仅当x=
2
y=
2
+2
2
时取等号.
∴x+2y的最小值是3+2
2

故答案为:3+2
2
点评:本题考查了“乘1法”和基本不等式的性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求函数f(x)=ln(1+x)-
1
4
x2在[0,2]上的最大值是
 
,最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=log
1
2
(x-2)
在区间(2,4)上的值域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
2x-1
+x的值域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=6sin(
1
4
x-
π
6
)的初相是
 
,图象最高点的坐标是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

甲乙两辆车去同一货场装货物,货场每次只能给一辆车装货物,所以若两辆车同时到达,则需要有一辆车等待.已知甲、乙两车装货物需要的时间都为20分钟,倘若甲、乙两车都在某1小时内到达该货场(在此期间货场没有其他车辆),则至少有一辆车需要等待装货物的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

以下命题:
①存在x,使sinx•cosx=
3
4

②y=lg(2cosx-1)的定义域为(2kπ-
π
3
,2kπ+
π
3
)且k∈Z;
③因为y=sinx的递增区间为[2kπ-
π
2
,2kπ+
π
2
],k∈Z,故y=sinx在第一象限内递增;
④若α,β为第三象限角,且sinα>sinβ,则必有tanα>tanβ;
⑤函数f(x)=2sin(ωx+
π
4
)在同一周期内的最高点和最低点间距离为
16+π2
,则ω=2;
其中正确的为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanθ=2,则
sin(
π
2
+θ)-cos(π+θ)
sin(-
3
2
π-θ)-sin(θ-4π)
的值为(  )
A、2
B、-2
C、0
D、
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个判断:
①?x∈R,x2-x+1≤0;
②已知随机变量X服从正态分布N(3,σ2),P(X≤6)=0.72,则P(X≤0)=0.28;
③已知(x2+
1
x
n的展开式的各项系数和为32,则展开式中x项的系数为20;
1
0
1-x2
dx>
e
1
1
x
dx
其中正确的个数有(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

同步练习册答案