精英家教网 > 高中数学 > 题目详情
已知函数(其中a,b为实常数)。
(Ⅰ)讨论函数的单调区间:
(Ⅱ)当时,函数有三个不同的零点,证明:
(Ⅲ)若在区间上是减函数,设关于x的方程的两个非零实数根为。试问是否存在实数m,使得对任意满足条件的a及t恒成立?若存在,求m的取值范围;若不存在,请说明理由。
(I)当a=0时,f(x)的增区间为(-∞,+∞);
当a>0时,f(x)的增区间为(-∞,0),(a,+∞);f(x)的减区间为(0,a);
当a<0时,f(x)的增区间为(-∞,a),(0,+∞);f(x)的减区间为(a,0).
(II)-a<b<a3-a.(III)存在实数m满足条件,此时m∈[].

试题分析:(I)求导函数,对参数a进行讨论,利用导数的正负,确定函数的单调区间;
(II)确定f(x)的极大值为f(0)=a+b,f(x)的极小值为f(a)=a+b-a3,要使f(x)有三个不同的零点,则f(0)>0,f(a)<0,从而得证;
(III)先确定|x1-x2|=,并求得其最小值,假设存在实数m满足条件,则m2+tm+1≤(min,即m2+tm+1≤4,即m2+tm-3≤0在t∈[-1,1]上恒成立,从而可求m的范围.
解:(I)∵
当a=0时,≥0,于是在R上单调递增;
当a>0时,x∈(0,a),,得在(0,a)上单调递减;
x∈(-∞,0)∪(a,+∞),,得在(-∞,0),(a,+∞)上单调递增;
当a<0时,,得在(0,a)上单调递减;
x∈(-∞,a)∪(0,+∞),在(-∞,a),(0,+∞)上单调递增.
综上所述:当a=0时,f(x)的增区间为(-∞,+∞);
当a>0时,f(x)的增区间为(-∞,0),(a,+∞);f(x)的减区间为(0,a);
当a<0时,f(x)的增区间为(-∞,a),(0,+∞);f(x)的减区间为(a,0).……3分
(II)当a>0时,由(I)得f(x)在(-∞,0),(a,+∞)上是增函数,f(x)在(0,a)上是减函数;则f(x)的极大值为f(0)=a+b,f(x)的极小值为f(a)=a+b-a3
要使f(x)有三个不同的零点,则  即可得-a<b<a3-a.…8分
(III)由2x3-3ax2+a+b=x3-2ax2+3x+a+b,得x3-ax2-3x=0即x(x2-ax-3)=0,
由题意得x2-ax-3=0有两非零实数根x1,x2,则x1+x2=a,x1x2=-3,
.∵ f (x)在[1,2]上是减函数,
≤0在[1,2]上恒成立,
其中x-a≤0即x≤a在[1,2]上恒成立,∴ a≥2.∴ ≥4.
假设存在实数m满足条件,则m2+tm+1≤()min,即m2+tm+1≤4,即m2+tm-3≤0在t∈[-1,1]上恒成立,
    解得
∴ 存在实数m满足条件,此时m∈[]. …………………14分
点评:解决该试题的关键是利用导数的正负对于函数单调性的影响得到函数单调区间,进而分析极值问题,以及构造函数的思想求证函数的最值,解决恒成立问题的运用。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数(其中) ,点从左到右依次是函数图象上三点,且.
(1)证明: 函数上是减函数;
(2)求证:⊿是钝角三角形;
(3)试问,⊿能否是等腰三角形?若能,求⊿面积的最大值;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知函数
(1)若时,在其定义域内单调递增,求的取值范围;
(2)设函数的图象与函数的图象交于两点,过线段的中点轴的垂线分别交于点,问是否存在点,使处的切线与处的切线平行?若存在,求的横坐标,若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分分)已知函数是不同时为零的常数).
(1)当时,若不等式对任意恒成立,求实数的取值范围;
(2)求证:函数内至少存在一个零点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知函数为常数)。
(Ⅰ)函数的图象在点()处的切线与函数的图象相切,求实数的值;
(Ⅱ)设,若函数在定义域上存在单调减区间,求实数的取值范围;
(Ⅲ)若,对于区间[1,2]内的任意两个不相等的实数,都有
成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知,函数.
(Ⅰ)当时,求使成立的的集合;
(Ⅱ)求函数在区间上的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数是定义在R上的奇函数,且,则=(  )
A.3  B.C.2D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

无论值如何变化,函数)恒过定点(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,且定义域为(0,2).
(1)求关于x的方程+3在(0,2)上的解;
(2)若是定义域(0,2)上的单调函数,求实数的取值范围;
(3)若关于x的方程在(0,2)上有两个不同的解,求k的取值范围。

查看答案和解析>>

同步练习册答案