精英家教网 > 高中数学 > 题目详情
5.已知,a,b,c分别是△ABC三个内角A,B,C的对边,下列四个命题:
①若tanA+tanB+tanC>0,则△ABC是锐角三角形
②若acoA=bcosB,则△ABC是等腰三角形
③若bcosC+ccosB=b,则△ABC是等腰三角形
④若$\frac{a}{cosA}$=$\frac{b}{cosB}=\frac{c}{cosC}$,则△ABC是等边三角形
其中正确命题的序号是①③④.

分析 利用两角和的正切函数判断①的正误;根据正弦定理及二倍角公式,判断三角形形状,可判断②③④的正误;

解答 解:对于①,∵tanA+tanB=tan(A+B)(1-tanAtanB),
∴tanA+tanB+tanC=tan(A+B)(1-tanAtanB)+tanC=tanAtanBtanC>0,
∴A,B,C是△ABC的内角,故内角都是锐角,故①正确;
对于②,若acoA=bcosB,则sinAcosA=sinBcosB,
则2sinAcosA=2sinBcosB,则sin2A=sin2B,
则A=B,或A+B=90°,即△ABC是等腰三角形或直角三角形,故②错误
对于③,若bcosC+ccosB=b,sinBcosC+sinCcosB=sin(B+C)=sinA=sinB,
即A=B,则△ABC是等腰三角形,故③正确;
④对于④,若$\frac{a}{cosA}$=$\frac{b}{cosB}=\frac{c}{cosC}$,则$\frac{SinA}{cosA}=\frac{sinB}{cosB}=\frac{sinC}{cosC}$,即tanA=tanB=tanC,即A=B=C,即△ABC是等边三角形,故④正确;
故答案为:①③④.

点评 本题考查两角和的正切公式以及三角函数的符号,三角函数的图象与性质的应用,正弦定理等知识点,考查学生训练运用公式熟练变形的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.在△ABC中,已知a=$\sqrt{3}$,b=1,A=130°,则此三角形解的情况为(  )
A.无解B.只有一解C.有两解D.解的个数不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在区间[0,1]内随机取两个实数分别为a,b,则使函数y=$\frac{1}{3}$x3+ax2-(b2-1)x+2存在极值点的概率为1-$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知三个等式:①ab>0②$\frac{c}{a}$>$\frac{d}{b}$③bc>ad以其中两个作为条件,剩下一个作为结论,则可组成多少个正确命题?并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.小明通过做游戏的方式来确定周末活动,他随机地往单位圆中投掷一点,若此点到圆心的距离大于$\frac{1}{2}$,则周末看电影;若此点到圆心的距离小于$\frac{1}{4}$,则周末打篮球;否则就在家看书.那么小明周末在家看书的概率是$\frac{3}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在△ABC中,角A,B,C所对的边分别为a,b,c,若△ABC不是直角三角形,则下列命题正确的是①④⑤(写出所有正确命题的编号)
①tanA•tanB•tanC=tanA+tanB+tanC
②tanA+tanB+tanC的最小值为3$\sqrt{3}$
③tanA,tanB,tanC中存在两个数互为倒数
④若tanA:tanB:tanC=1:2:3,则A=45°
⑤当$\sqrt{3}$tanB-1=$\frac{tanB+tanC}{tanA}$时,则sin2C≥sinA•sinB.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.不等式组$\left\{\begin{array}{l}x-y≤0\\ x-2y+2≥0\\ x≥-1\end{array}\right.$表示的平面区域是面积为$\frac{9}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,三棱柱ABC-A1B1C1中,点A1在平面ABC内的射影D在线段AC上,∠ACB=90°,BC=1,AC=CC1=2.
(Ⅰ)证明:AC1⊥A1B;
(Ⅱ)设直线AA1与平面ABC所成角为60°,求二面角A1-AB-C的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在直角坐标系xOy中,以原点O为极点,x轴非负半轴为极轴建立极坐标系,已知曲线M的极坐标方程为$\sqrt{2}ρcos(θ+\frac{π}{4})=1$,曲线N的参数方程为$\left\{\begin{array}{l}{x=4{t}^{2}}\\{y=4t}\end{array}\right.$(t为参数).若曲线M与N相交于A,B两点,则线段AB的长等于8.

查看答案和解析>>

同步练习册答案