精英家教网 > 高中数学 > 题目详情
已知O,A,B是平面上三个不同点,动点P满足|
PA
|=|
PB
|,且|
OA
|=3,|
OB
|=1,则
OP
•(
OA
-
OB
)的值为
 
考点:平面向量数量积的运算
专题:平面向量及应用
分析:利用坐标系,利用向量的坐标运算、数量积运算及其性质即可得出.
解答: 解:如图所示,以线段AB的中点D为坐标原点,BA的方向为x轴的正方形建立直角坐标系.
不妨设A(a,0),则B(-a,0),P(0,t),O(m,n).
OA
-
OB
=
BA
=(2a,0).
∵|
OA
|=3,|
OB
|=1,
∴(m-a)2+n2=9,(m+a)2+n2=1.
∴ma=-2.
OP
•(
OA
-
OB
)
=
OP
BA
=(-m,t-n)•(2a,0)=-2ma=4.
故答案为:4.
点评:本题考查了向量的坐标运算、数量积运算及其性质,考查了推理能力和计算能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知公差不为零的等差数列{an}的前5项和为30,且a2为a1和a4的等比中项.
(1)求{an}的通项公式an及前n项和Sn
(2)若数列{bn}满足
bn+1
bn
=
Sn
n
(n∈N*),且b1=1,求数列{
n
bn+1
}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c均为正数
(1)证明:a2+b2+c2+(
1
a
+
1
b
+
1
c
2≥6
3
,并确定a,b,c如何取值时等号成立;
(2)若a+b+c=1,求
3a+1
+
3b+1
+
3c+1
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且Sn+1=2an,求使不等式
a
2
1
+
a
2
2
+…+
a
2
n
<5×2n+1成立的n的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=sin2x+sinxcosx,x∈[0,
π
2
]
(1)求f(x)的值域;
(2)若f(α)=
5
6
,求sin2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=2px的焦点F与双曲线
x2
7
-
y2
9
=1的右焦点重合,抛物线的准线与x轴的焦点为K,点A在抛物线上,且|AK|=
2
|AF|,则△AFK的面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=sin(x+
π
3
)+asin(x-
π
6
)的一条对称轴方程为x=
π
2
,则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某几何体的三视图及部分数据如图所示,则此几何体的体积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

三棱锥P-ABC的四个顶点均在同一球面上,其中△ABC是正三角形,PA⊥平面ABC,PA=2AB=6,则该球的表面积为
 

查看答案和解析>>

同步练习册答案