精英家教网 > 高中数学 > 题目详情
已知f(x)=sin2x+sinxcosx,x∈[0,
π
2
]
(1)求f(x)的值域;
(2)若f(α)=
5
6
,求sin2α的值.
考点:三角函数中的恒等变换应用
专题:三角函数的图像与性质
分析:(1)首先,化简函数解析式:f(x)=
2
2
sin(2x-
π
4
)+
1
2
,然后,根据x∈[0,
π
2
],求解f(x)的值域;
(2)根据(1)的函数解析式,因为sin2α=sin(2α-
π
4
+
π
4
),先求解cos(2α-
π
4
)=
7
3
,然后求解.
解答: 解:(1)f(x)=sin2x+sinxcosx
=
1-cos2x
2
+
sin2x
2

=
2
2
sin(2x-
π
4
)+
1
2

∴f(x)=
2
2
sin(2x-
π
4
)+
1
2

∵x∈[0,
π
2
],
∴2x-
π
4
∈[-
π
4
4
],
当2x-
π
4
=-
π
4
,即x=0时,f(x)有最小值0.当2x-
π
4
=
π
2
时,f(x)有最大值
2
+1
2

f(x)值域:[0,
2
+1
2
].
(2)f(α)=
2
2
sin(2α-
π
4
)+
1
2
=
5
6
,得
sin(2α-
π
4
)=
2
3

∵α∈[0,
π
2
],
∴2α-
π
4
∈[-
π
4
4
],
又∵0<sin(2α-
π
4
)=
2
3
2
2

∴2α-
π
4
∈(0,
π
4
),
得cos(2α-
π
4
)=
1-(
2
3
)2
=
7
3

∴sin2α=sin(2α-
π
4
+
π
4

=
2
2
[sin(2α-
π
4
)+cos(2α-
π
4
)]
=
2+
14
6

∴sin2α的值
2+
14
6
点评:本题重点考查了三角恒等变换公式、辅助角公式、二倍角公式、三角函数的图象与性质等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,且a=1,b=
3
,B=2A.
(1)求cosA的值;
(2)求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ)△ABC的三边a,b,c的倒数成等差数列,求证:B<
π
2
;(提示:可以利用反证法证明)
(Ⅱ)设x>0,y>0,求证:(x2+y2 
1
2
>(x3+y3 
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正△ABC的边长为3,P1是边AB上的一点且BP1=1,从P1向BC作垂线,垂足为Q1,从Q1向CA作垂线,垂足为R1,从R1向AB作垂线,垂足为P2.再从P2重复同样作法,依次得到点Q2,R2,P3,Q3,R3,…Pn,Qn,Rn,…,设BPn=an(n=1,2,3,…).
(Ⅰ)求an+1与an关系式;
(Ⅱ)求数列{nan}前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

证明:f(x)=x+
4
x
是奇函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O,A,B是平面上三个不同点,动点P满足|
PA
|=|
PB
|,且|
OA
|=3,|
OB
|=1,则
OP
•(
OA
-
OB
)的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

-
2
3
πrad化为角度应为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆
x2
a2
+y2=1(a>1)上存在一点P,使得它对两个焦点F1,F2,张角∠F1PF2=
π
2
,则该椭圆的离心率的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

无重复数字的五位数a1a2a3a4a5,当a1<a2,a2>a3,a3<a4,a4>a5时称为波形数,则由1,2,3,4,5任意组成的一个没有重复数字的五位数是波形数的概率为
 

查看答案和解析>>

同步练习册答案