精英家教网 > 高中数学 > 题目详情
在△ABC中,角A,B,C的对边分别为a,b,c,且a=1,b=
3
,B=2A.
(1)求cosA的值;
(2)求c的值.
考点:余弦定理,正弦定理
专题:三角函数的求值
分析:(1)利用正弦定理列出关系式,将a,b,B=2A代入,计算即可求出cosA的值;
(2)由cosA的值求出A的度数,进而求出B与C的度数,利用正弦定理即可求出c的值.
解答: 解:(1)在△ABC中,a=1,b=
3
,B=2A,
由正弦定理
a
sinA
=
b
sinB
得:
1
sinA
=
3
sin2A
=
3
2sinAcosA

则cosA=
3
2

(2)∵cosA=
3
2
,A为三角形内角,
∴A=
π
6

∴B=2A=
π
3
,C=
π
2

∴由正弦定理
a
sinA
=
c
sinC
得:c=
asinC
sinA
=2.
点评:此题考查了正弦、余弦定理,以及特殊角的三角函数值,熟练掌握定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=(ex+e-x)sinx的部分图象大致为(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=2cosxsin(x-A)+sinA,(x∈R)在x=
12
处取得最大值,且A∈[0,π].
(Ⅰ)求角A的大小;
(Ⅱ)求函数f(x)在区间[-
π
6
π
3
]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示的电路图,设命题p:开关K闭合,命题q:开关K1闭合,命题s:开关K2闭合,命题t:开关K3闭合.
(1)写出灯泡A亮的充要条件;
(2)写出灯泡B不亮的充分不必要条件;
(3)写出灯泡C亮的必要不充分条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,点A,B是单位圆O上的两点,点C是圆O与x轴正半轴的交点,将锐角α的终边OA按逆时针方向旋转
π
3
到OB.
(1)若A的坐标为(
3
5
4
5
),求点B的横坐标;                          
(2)求|BC|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知公差不为零的等差数列{an}的前5项和为30,且a2为a1和a4的等比中项.
(1)求{an}的通项公式an及前n项和Sn
(2)若数列{bn}满足
bn+1
bn
=
Sn
n
(n∈N*),且b1=1,求数列{
n
bn+1
}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:A(cos2x,sin2x),其中0≤x<π,B(1,1),
OA
+
OB
=
OC
,f(x)=|
OC
|2
(1)求f(x)的对称轴和对称中心;  
(2)求f(x)的单调递增区间.(提示:sinα+cosα=
2
sin(α+
π
4
))

查看答案和解析>>

科目:高中数学 来源: 题型:

已知各项均为正数的等比数列{an}的首项a1=2,Sn为其前n项和,若5S1,S3,3S2成等差数列.
(1)求数列{an}的通项公式;
(2)设bn=log2an,cn=
2
bnbn+1
,记数列{cn}的前n项和为Tn.若对于任意的n∈N*,Tn≤λ(n+4)恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=sin2x+sinxcosx,x∈[0,
π
2
]
(1)求f(x)的值域;
(2)若f(α)=
5
6
,求sin2α的值.

查看答案和解析>>

同步练习册答案