精英家教网 > 高中数学 > 题目详情
4.设公差不为0的等差数列{an}的前n项和为Sn.若S3=a22,且S1,S2,S4成等比数列,则a10等于19.

分析 设等差数列{an}的公差为d(d≠0),由等比数列的中项的性质,运用等差数列的求和公式,可得d=2a1,再由S3=a22,运用等差数列的通项公式和求和公式,解方程可得首项和公差,进而得到所求值.

解答 解:设等差数列{an}的公差为d(d≠0),
由S1,S2,S4成等比数列,可得:
S22=S1S4,即有(2a1+d)2=a1(4a1+6d),
可得d=2a1
由S3=a22,可得3a1+3d=(a1+d)2
即有9a1=9a12
解得a1=1,d=2,
即有a10=a1+9d=1+9×2=19.
故答案为:19.

点评 本题考查等差数列的通项公式和求和公式的运用,考查等比数列的中项的性质,运算化简能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知实数x,y满足不等式组$\left\{\begin{array}{l}{x+2y≤8}\\{2x+y≤8}\\{x≥0}\\{y≥0}\end{array}\right.$ 则目标函数z=6x+2y-1的最大值为(  )
A.17B.20C.21D.23

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.根据如下样本数据
x014m3
ym3m+57
求得y关于x的线性回归直线方程为$\widehat{y}$=2.1x+0.85,则m的值为0.5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设函数f(x)=ax+3-|2x-1|.
(Ⅰ)若a=1,解不等式f(x)≤2;
(Ⅱ)若函数有最大值,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.等比数列{an}的公比为q,前n项积为Tn,且满足a1>1,a2015•a2016>1,(a2015-1)(a2016-1)<0,给出以下四个命题:①q>1;②a2015•a2017<1;③T2015为Tn的最大值;④使Tn>1成立的最大的正整数4031,则其中正确的命题序号为②③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若集合A={0,1,2,4},B={1,2,3},则A∪B=(  )
A.{1,2}B.{0,3,4}C.{0,1,2,3,4}D.{0,1,1,2,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在△ABC中,∠A,∠B,∠C的对边分别为a,b,c,且a=1,b=2,c=$\sqrt{7}$,则∠C=(  )
A.120°B.60°C.45°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列式子恒成立的是(  )
A.sin(α+β)=sinα+sinβB.cos(α-β)=cosαcosβ+sinαsinβ
C.sin(α-β)=cosαcosβ-sinαsinβD.cos(α+β)=cosαsinβ-sinαcosβ

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.cos420°+sin330°等于(  )
A.1B.-1C.$\frac{1}{2}$D.0

查看答案和解析>>

同步练习册答案