精英家教网 > 高中数学 > 题目详情
设a<0,f(x)=9x+
a2
x
-7,若f(x)≥a+1对一切x>0恒成立,则a的取值范围为
 
考点:函数恒成立问题
专题:函数的性质及应用
分析:f(x)≥a+1对一切x>0恒成立,9x2-(8+a)x+a2≥0,恒成立,构造函数设g(x)=9x2-(8+a)x+a2,利用二次函数的性质即可求出a的范围.
解答: 解:∵f(x)=9x+
a2
x
-7,若f(x)≥a+1对一切x>0恒成立,
∴9x+
a2
x
-7≥a+1,在(0,+∞)上恒成立,
∴9x2-(8+a)x+a2≥0,
设g(x)=9x2-(8+a)x+a2
当x>0时,g(x)≥0恒成立,
8+a
9
≤0
g(0)≥0
或△≤0,
解得a≤-8,或a≥
8
5
(舍去)或a≤-
8
7

综上所述a≤-
8
7

故答案为a≤-
8
7
点评:本题考查了函数的奇偶性、二次函数的单调性、恒成立问题的等价转化方法,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在矩形ABCD中,对角线AC与相邻两边所成的角为α,β,则有cos2α+cos2β=1.
类比到空间中的一个正确命题是:在长方体ABCDA1B1C1D1中,对角线AC1与相邻三个面所成的角为α,β,γ,则cos2α+cos2β+cos2γ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m,n表示两条不同直线,α表示平面,下列说法正确的是(  )
A、若m∥α,n∥α,则m∥n
B、若m⊥α,m⊥n,则n∥α
C、若m⊥α,n?α,则m⊥n
D、若m∥α,m⊥n,则n⊥α

查看答案和解析>>

科目:高中数学 来源: 题型:

写出通项:
-
1
2
5
7
,-
4
5
11
13
,-
7
8
,…

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
a
2
x2
+bx-lnx,其中a,b∈R.
(Ⅰ)设曲线y=f(x)在点(1,f(1))处的切线方程为y=2x-3,求实数a,b的值;
(Ⅱ)当a≥0时,讨论f(x)在其定义域上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

方程x2+
2
x-1=0的解可视为函数y=x+
2
的图象与函数y=
1
x
的图象交点的横坐标,若方程x4+ax-4=0各个实根x1,x2,…,xk(k≤4)所对应的点(xi
4
xi
)(i=1,2,…,k)均在直线y=x的同侧,则实数a的取值范围是(  )
A、(-∞,-3)
B、(-3,3)
C、(3,∞)
D、(-∞,-6)∪(6,∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

过点P(2,1)的直线l与x轴、y轴正方向交于点A、B,分别根据以下条件求直线l的方程:
(1)直线l与x轴、y轴围成等腰三角形;
(2)点P是AB的中点;
(3)S△AOB=6(O为坐标原点);
(4)|OA|+|OB|最小(O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:

求凼数y=
cosx
lg(1+tanx)
的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的图象的第一部分如图所示,则(  )
A、f(x)的最小正周期为2π
B、f(x)的图象关于直线x=
π
3
对称
C、f(x)的图线关于点(
12
,0)对称
D、f(x)在[0,
π
2
]上是增函数

查看答案和解析>>

同步练习册答案