精英家教网 > 高中数学 > 题目详情
17.一个盒子中装有形状、大小、质地均相同的5张卡片,上面分别标有数字1,2,3,4,5.甲、乙两人分别从盒子中不放回地随机抽取1张卡片.
(Ⅰ)求甲、乙两人所抽取卡片上的数字之和为偶数的概率;
(Ⅱ)以盒子中剩下的三张卡片上的数字作为线段长度,求以这三条线段为边可以构成三角形的概率.

分析 (Ⅰ)根据盒子中装有形状大小相同的5张卡片,上面分别标有数字1,2,3,4,5,可以写出所有可能的结果,从而求出甲乙所抽卡片上的数字之和为偶数的概率;
(Ⅱ)确定剩下的三边长包含的基本事件,剩下的三张卡片上的数字作为边长能构成三角形的基本事件,即可求出能构成三角形的概率.

解答 解:(Ⅰ)甲乙两人分别从盒子中随机不放回的各抽取一张,基本事件有:
(1,2),(1,3),(1,4),(1,5),(2,1),(2,3),(2,4),
(2,5),(3,1),(3,2),(3,4),(3,5),(4,1),(4,2),
(4,3),(4,5),(5,1),(5,2),(5,3),(5,4)共20个
设“甲、乙两人所抽取卡片上的数字之和为偶数”为事件A,
则事件A包含的基本事件有:(1,3),(1,5),(2,4),(3,1),(3,5),(4,2),(5,1),(5,3),共8个.
所以$P(A)=\frac{8}{20}=\frac{2}{5}$.
(Ⅱ)以盒子中剩下的三张卡片上的数字作为线段长度所包含的基本事件有:
{1,2,3},{1,2,4},{1,2,5},{1,3,4},{1,3,5},{1,4,5},{2,3,4},{2,3,5},{2,4,5},{3,4,5},共10个.
设“以盒子中剩下的三张卡片上的数字作为线段长度,求以这三条线段为边可以构成三角形”为事件B,
则事件B包含的基本事件有{2,3,4},{2,4,5},{3,4,5},共3个.
所以$P(B)=\frac{3}{10}$.

点评 本题考查了古典概型概率的问题,关键是不重不漏的列举所有的基本事件,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2,3,4,乙袋中红色、黑色、白色小球的个数均为3,某人用左右手分别从甲、乙两袋中取球.
(1)若左右手各取一球,求两只手中所取的球颜色不同的概率;
(2)若左右手依次各取两球,称同一手中两球颜色相同的取法为成功取法,记两次取球(左右手依次各取两球为两次取球)的成功取法次数为随机变量X,求X的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某职业学校有2000名学生,校服务部为了解学生在校的月消费情况,随机调查了100名学生,并将统计结果绘成直方图如图:
(Ⅰ)试估计该校学生在校月消费的平均数;
(Ⅱ)根据校服务部以往的经验,每个学生在校的月消费金额x(元)和服务部可获得利润y(元),满足关系式:$y=\left\{\begin{array}{l}20,\;\;\;200≤x<400\\ 40,\;\;400≤x<800\\ 80,\;\;800≤x≤1200.\end{array}\right.$根据以上抽样调查数据,将频率视为概率,回答下列问题:
(ⅰ)对于任意一个学生,校服务部可获得的利润记为ξ,求ξ的分布列及数学期望.
(ⅱ)若校服务部计划每月预留月利润的$\frac{2}{9}$,用于资助在校月消费低于400元的学生,那么受资助的学生每人每月可获得多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在平面直角坐标系xOy中,已知经过原点O的直线l与圆C:x2+y2-4x-1=0交于A,B两点.
(Ⅰ)若直线m:ax-2y+a+2=0(a>0)与圆C相切,切点为B,求直线l的方程;
(Ⅱ)若圆C与x轴的正半轴的交点为D,求△ABD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.一个几何体的三视图如图所示(单位:cm),则该几何体的体积为12πcm3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的右顶点是圆x2+y2-4x+3=0的圆心,其离心率为$\frac{{\sqrt{3}}}{2}$,则椭圆C的方程为(  )
A.$\frac{x^2}{4}$+y2=1B.$\frac{x^2}{3}$+y2=1C.$\frac{x^2}{2}$+y2=1D.$\frac{x^2}{4}$+$\frac{y^2}{3}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知a,b,c∈R+,求证:$\frac{bc}{a}$+$\frac{ac}{b}$+$\frac{ab}{c}$≥a+b+c.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.从1、2、3、4、5中不重复的随机选取两个数,它们的和为奇数的概率为$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.“ALS 冰桶挑战赛”是一项社交网络上发起的筹款活动,活动规定:被邀请者要么在24小内接受挑战,要么选为慈善机构捐款(不接受挑战),并且不能重复参加该活动,若被邀请者接受挑战,则他需在网络上发布自己被冰水浇遍全身的视频,然后便可以邀请另外3个人参与这项活动,假设每个人接受挑战与不接受挑战是等可能的,且互不影响,若某参与者接受挑战后,对其他3个人发出邀请,则这3个人中至少有2个接受挑战的概率是多少?

查看答案和解析>>

同步练习册答案