精英家教网 > 高中数学 > 题目详情
如图,平面ABCD⊥平面ADEF,其中ABCD为矩形,ADEF为梯形,AF∥DE,AF⊥FE,AF=AD=2DE=2,M为线段AD的中点.
(1)求直线MF与直线BD所成角的余弦值;
(2)若平面ABF与平面DBF所成角为θ,且tanθ=2
2
,求线段AB的长.
考点:与二面角有关的立体几何综合题,异面直线及其所成的角
专题:综合题,空间位置关系与距离
分析:(1)利用平面ABCD⊥平面ADEF,证明MF⊥BD,即可得出结论.
(2)向量法:以F为原点,AF,FE所在直线分别为x轴和y轴建立如图所示的空间直角坐标系,求出二面角A-BF-D中两个半平面的法向量,进而构造AB长的方程,解方程可得答案.
解答: 解:(1)由已知得△ADF为正三角形,所以MF⊥AD,
因为平面ABCD⊥平面ADEF,平面ABCD∩平面ADEF=AD,MF?平面ADEF,
所以MF⊥BD,所以所成角的余弦值为0…(5分)
(2)设AB=x,以F为原点,AF,FE所在直线分别为x轴和y轴建立如图所示的空间直角坐标系,
则F(0,0,0),A(-2,0,0),D(-1,
3
,0)
,B(-2,0,x),
所以
DF
=(-1,
3
,0)
BF
=(2,0,-x)

因为EF⊥平面ABF,所以平面ABF的法向量可取
n
1
=(0,1,0)

n
2
=(a,b,c)
为平面DBF的法向量,则
2a-cx=0
a-
3
b=0

可取
n
2
=(
3
,1,
2
3
x
)

tanθ=2
2
cosθ=
1
3
,所以
|
n
1
n
2
|
|
n
1
|•|
n
2
|
=
1
3

x=
2
5
15
所以AB=
2
5
15
…(12分)
点评:本题考查的知识点是异面直线及其所成的角,二面角的平面角及求法.向量法的关键是构造空间坐标系,求出二面角A-BF-D中两个半平面的法向量.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

sinθ+cosθ
sinθ-cosθ
=2
,则2sinθcosθ=(  )
A、-
3
10
B、
3
5
C、±
3
5
D、
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C1:y=
1
2p
x2(p>0)的焦点与双曲线C2
x2
3
-y2=1的右焦点的连线交C1于第一象限的点M,若C1在点M处的切线平行于C2的一条渐近线,则p=(  )
A、
3
16
B、
3
8
C、
2
3
3
D、
4
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m、n是三次函数f(x)=
1
3
x3+
1
2
ax2+2bx(a、b∈R)的两个极值点,且m∈(0,1),n∈(1,2),则
b+3
a+2
的取值范围是(  )
A、(-∞,
2
5
)∪(1,﹢∞)
B、(
2
5
,1)
C、(-4,3)
D、(-∞,-4)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1,Rt△ABC中,∠ACB=30°,∠ABC=90°,D为AC中点,AE⊥BD于E,延长AE交BC于F,将△ABD沿BD折起,使平面ABD⊥平面BCD,如图2所示.
(1)求证:AE⊥平面BCD;
(2)求二面角A-DC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

为鼓励中青年教师参加篮球运动,校工会组织了100名中青年教师进行投篮活动,每人投10次,投中情况绘成频率分布直方图(如图),则这100 名教师投中6至8个球的人数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

工厂对一批产品进行抽样检测,如图是根据抽样检测后的产品重量(单位:克)数据绘制的频率分布直方图,其中产品重量的范围是[46,56],样本数据分组诶[46,48),[48,50),[50,52),[52,54),[54,56].若样本中产品重量小于50克的个数是36,则样本中重量不小于48克,并且小于54克的产品的个数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

空间四边形OABC中,OB=OC,∠AOB=∠AOC=60°,则cos<
OA
BC
>=(  )
A、
1
2
B、
2
2
C、-
1
2
D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx.若在区间(0,3e)上随机取一个数x,则使得不等式f(x)≤1成立的概率为
 

查看答案和解析>>

同步练习册答案