精英家教网 > 高中数学 > 题目详情
工厂对一批产品进行抽样检测,如图是根据抽样检测后的产品重量(单位:克)数据绘制的频率分布直方图,其中产品重量的范围是[46,56],样本数据分组诶[46,48),[48,50),[50,52),[52,54),[54,56].若样本中产品重量小于50克的个数是36,则样本中重量不小于48克,并且小于54克的产品的个数是
 
考点:频率分布直方图
专题:概率与统计
分析:根据频率分布直方图,先求出样本容量的值,再计算样本中重量在[48,54)的频数即可.
解答: 解:根据频率分布直方图,得;
样本中产品重量小于50克的频率是(0.050+0.100)×2=0.3,
∴样本容量为
36
0.3
=120;
∴样本中重量在[48,54)的频率为1-0.050×2-0.075×2=0.75,
∴对应的产品个数为120×0.75=90.
故答案为:90.
点评:本题考查了频率分布直方图的应用问题,也考查了频率=
频数
样本容量
的应用问题,是基础题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知O为△ABC的外心,|
AB
|=16,|
AC
|=10
2
,若
AO
=x
AB
+y
AC
,且32x+25y=25,则|
OA
|=(  )
A、8B、10C、12D、14

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,AB=3,AC=2,
BD
=
1
2
BC
,则
AD
BD
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,平面ABCD⊥平面ADEF,其中ABCD为矩形,ADEF为梯形,AF∥DE,AF⊥FE,AF=AD=2DE=2,M为线段AD的中点.
(1)求直线MF与直线BD所成角的余弦值;
(2)若平面ABF与平面DBF所成角为θ,且tanθ=2
2
,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,容量为9的4个样本,它们的平均数都是5,频率条形图如下,则标准差最大的一组是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(sin
x
4
3
),
n
=(cos
x
4
,cos2
x
4
),f(x)=
m
n

(I)若f(x)=0,求sin(
π
6
+x)值;
(II)在△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,求f(A)的最大值及相应的角A.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f1(x),f2(x),h(x),如果存在实数a,b使得h(x)=a•f1(x)+b•f2(x),那么称h(x)为f1(x),f2(x)的生成函数.
(Ⅰ)下面给出两组函数,h(x)是否分别为f1(x),f2(x)的生成函数?并说明理由;
第一组:f1(x)=sinx,f2(x)=cosx,h(x)=sin(x+
π
3
);
第二组:f1(x)=x2-x,f2(x)=x2+x+1,h(x)=x2-x+1;
(Ⅱ)设f1(x)=log2x,f2(x)=log
1
2
x,a=2,b=1,生成函数h(x).若不等式3h2(x)+2h(x)+t<0在x∈[2,4]上有解,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x•(
1
2
)x+
1
x+1
,点An为函数y=f(x)图象上横坐标为n(n∈N*)的点,O为坐标原点,向量
e
=(1,0).记θn为向量
OAn
e
的夹角,Sn=tanθ1+tanθ2+…+tanθn,则
lim
n→∞
Sn
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的顶点A(2,-1),B(4,3),C(4,-2),求:
(1)BC边上中线AD所在直线的一个方向向量的坐标
(2)∠A的平分线AM所在直线的一个方向向量的坐标.

查看答案和解析>>

同步练习册答案