精英家教网 > 高中数学 > 题目详情
已知抛物线C1:y=
1
2p
x2(p>0)的焦点与双曲线C2
x2
3
-y2=1的右焦点的连线交C1于第一象限的点M,若C1在点M处的切线平行于C2的一条渐近线,则p=(  )
A、
3
16
B、
3
8
C、
2
3
3
D、
4
3
3
考点:抛物线的简单性质
专题:综合题,圆锥曲线的定义、性质与方程
分析:由曲线方程求出抛物线与双曲线的焦点坐标,由两点式写出过两个焦点的直线方程,求出函数y=
1
2p
x2(p>0)在x取直线与抛物线交点M的横坐标时的导数值,由其等于双曲线渐近线的斜率得到交点横坐标与p的关系,把M点的坐标代入直线方程即可求得p的值.
解答: 解:由抛物线C1:y=
1
2p
x2(p>0)得x2=2py(p>0),
所以抛物线的焦点坐标为F(0,
p
2
).
x2
3
-y2=1得a=
3
,b=1,c=2.
所以双曲线的右焦点为(2,0).
则抛物线的焦点与双曲线的右焦点的连线所在直线方程为
y-0
p
2
-0
=
x-2
0-2

p
2
x+2y-p=0
①.
设该直线交抛物线于M(x0
x02
2p
),则C1在点M处的切线的斜率为
x0
p

由题意可知
x0
p
=
3
3
,得x0=
3
3
p
,代入M点得M(
3
3
p
p
6

把M点代入①得:
3
p2
3
+
2
3
p-2p=0

解得p=
4
3
3

故选:D.
点评:本题考查了双曲线的简单几何性质,考查了利用导数研究曲线上某点的切线方程,函数在曲线上某点处的切线的斜率等于函数在该点处的导数,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知tanα=-3,求:
(1)
sin2α-3cos2α
cos2α-sin2α
 
(2)
1
2
cos2α+
1
5
sin2α
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O为△ABC的外心,|
AB
|=16,|
AC
|=10
2
,若
AO
=x
AB
+y
AC
,且32x+25y=25,则|
OA
|=(  )
A、8B、10C、12D、14

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=sin(2x+θ)+
3
cos(2x-θ)为奇函数,则θ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC的三个角A,B,C所对的边分别是a,b,c,向量
m
=(2,-1),
n
=(sinBsinC,
3
+2cosBcosC),且
m
n

(1)求角A的大小.
(2)现给出以下三个条件:①B=45°;②2sinC-(
3
+1)sinB=0;③a=2.试从中再选择两个条件以确定△ABC,并求出所确定的△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

若一个三棱锥有三个面两两垂直,则称此三棱锥为直角三棱锥,在长方体的8个顶点中任取4个点构成的三棱锥中是直角三棱锥的概率为(  )
A、
4
35
B、
8
35
C、
2
29
D、
4
29

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,AB=3,AC=2,
BD
=
1
2
BC
,则
AD
BD
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,平面ABCD⊥平面ADEF,其中ABCD为矩形,ADEF为梯形,AF∥DE,AF⊥FE,AF=AD=2DE=2,M为线段AD的中点.
(1)求直线MF与直线BD所成角的余弦值;
(2)若平面ABF与平面DBF所成角为θ,且tanθ=2
2
,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x•(
1
2
)x+
1
x+1
,点An为函数y=f(x)图象上横坐标为n(n∈N*)的点,O为坐标原点,向量
e
=(1,0).记θn为向量
OAn
e
的夹角,Sn=tanθ1+tanθ2+…+tanθn,则
lim
n→∞
Sn
=
 

查看答案和解析>>

同步练习册答案