精英家教网 > 高中数学 > 题目详情
14.已知集合A={-2,-1,0,1,2},B={x|-1<log2x<2},则A∩B=(  )
A.{-1,0,1}B.{0,1,2}C.{0,1}D.{1,2}

分析 由对数函数的性质、对数的运算性质求出B,由交集的运算求出A∩B.

解答 解:由-1<log2x<2得log2$\frac{1}{2}$<log2x<log24,
则集合B={x|$\frac{1}{2}$<x<4},
因为集合A={-2,-1,0,1,2},
所以A∩B={1,2},
故选:D.

点评 本题考查交集及运算,对数函数的性质及对数的运算性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知f(x)=$\left\{\begin{array}{l}{log_a}x,x>1\\(a-2)x-1,x≤1\end{array}$在(-∞,+∞)上单调递增,则a的取值范围是(  )
A.(1,+∞)B.(2,+∞)C.(1,3]D.(2,3]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50m/min.在甲出发2min 后,乙从A乘缆车到B,在B处停留1min后,再从B匀速步行到C.假设缆车匀速直线运行的速度为130m/min,山路AC长为1260m,经测量,cos A=$\frac{12}{13}$,cos C=$\frac{3}{5}$.
(Ⅰ)求索道AB的长;
(Ⅱ)问:乙出发多少分钟后,乙在缆车上与甲的距离最短?
(Ⅲ)为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=sinx-x,g(x)=$\frac{sinx}{{e}^{x}}$.
(1)求证:当-$\frac{π}{2}$≤x≤0,有f(x)≥0;
(2)若g(x)≤ax对任意的x∈[-$\frac{π}{2}$,0]成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.下面五个命题中,其中正确的命题序号为②④⑤.
①若非零向量$\overrightarrow a$,$\overrightarrow b$满足|${\overrightarrow a$-$\overrightarrow b$|=|${\overrightarrow a}$|+|${\overrightarrow b}$|,则存在实数λ>0,使得$\overrightarrow b$=λ$\overrightarrow a$;
②函数 f(x)=4cos(2x-$\frac{π}{6}$)的图象关于点(-$\frac{π}{6}$,0)对称;
③在(-$\frac{π}{2}$,$\frac{π}{2}$)内方程 tanx=sinx有3个解;
④在△ABC中,A>B?sinA>sinB;
⑤若函数y=Acos(ωx+φ)(A>0,ω>0)为奇函数,则φ=kπ+$\frac{π}{2}$(k∈Z).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设等差数列{an}的前n项和为Sn,若S9=45,则a2+a4+a9=15.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.一个几何体的三视图如图所示,那么这个几何体的体积是(  )
A.4B.6C.8D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.与曲线$\frac{{x}^{2}}{24}$+$\frac{{y}^{2}}{49}$=1共焦点,且与曲线$\frac{{y}^{2}}{36}$-$\frac{{x}^{2}}{64}$=1共渐近线的双曲线方程为(  )
A.$\frac{{y}^{2}}{16}$-$\frac{{x}^{2}}{9}$=1B.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1C.$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{16}$=1D.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.三个数log2$\frac{1}{5}$,20.1,2-1的大小关系是(  )
A.${log_2}\frac{1}{5}\;<{2^{0.1}}\;<{2^{-1}}$B.${log_2}\frac{1}{5}\;<{2^{-1}}<{2^{0.1}}$
C.${2^{0.1}}\;<{2^{-1}}<{log_2}\frac{1}{5}$D.${2^{0.1}}\;<{log_2}\frac{1}{5}<{2^{-1}}$

查看答案和解析>>

同步练习册答案