精英家教网 > 高中数学 > 题目详情
11.在平面直角坐标系中,横纵坐标均为整数的点为整点,若函数f(x)的图象恰好通过n(n∈N*)个整点,则称函数f(x)为n阶整点函数,有下列函数:①f(x)=sinx;②g(x)=x2;③h(x)=($\frac{1}{2}$)x;④φ(x)=lnx,其中一阶整点函数的是①④.

分析 根据新定义的“一阶整点函数”的要求,对于四个函数一一加以分析,它们的图象是否通过一个整点,从而选出答案即可.

解答 解:对于函数f(x)=sin2x,它只通过一个整点(0,0),故它是一阶整点函数;
对于函数g(x)=x2,当x∈Z时,一定有g(x)=x3∈Z,即函数g(x)=x3通过无数个整点,
它不是一阶整点函数;
对于函数h(x)=${(\frac{1}{2})}^{x}$,当x=0,-1,-2,时,h(x)都是整数,故函数h(x)通过无数个整点,
它不是一阶整点函数;
对于函数φ(x)=lnx,它只通过一个整点(1,0),故它是一阶整点函数,
故答案为:①④.

点评 本题主要考查新定义,函数的图象特征,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.如图,已知长方形ABCD中,AD=$\frac{1}{2}$AB=a,M为CD的中点.将△ADM沿AM折起,使得平面ADM⊥平面ABCM,点O是线段AM的中点.
(1)求证:AD⊥BM;
(2)若三棱锥C-BMD的高为2,求a的值和△CDM的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.为了了解高一、高二、高三的身体状况,现用分层抽样的方法抽出一个容量为1200的样本,三个年级学生数之比依次为k:5:3,已知高一年级共抽取了240人,则高三年级抽取的人数为(  )
A.240B.300C.360D.400

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.一批产品共10件,其中3件是不合格品,用下列两种不同方式从中随机抽取2件产品检验:
方式一:一次性随机抽取2件;
方式二:先随机抽取1件,放回后再随机抽取1件;
记抽取的不合格产品数为ξ.
(1)分别求两种抽取方式下ξ的概率分布;
(2)比较两种抽取方式抽到的不合格品平均数的大小?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知点P在线段AB上,且|$\overrightarrow{AB}$=4|$\overrightarrow{AP}$|,设$\overrightarrow{PB}$=λ$\overrightarrow{PA}$,则实数λ的值为-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数y=log3|x|的图象大致形状是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的短轴长为(  )
A.2$\sqrt{3}$B.$\sqrt{3}$C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.过点M(2,-1)作斜率为$\frac{1}{2}$的直线与椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)相交于A,B两个不同点,若M是AB的中点,则该椭圆的离心率e=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图所示,△ABC和△A′B′C′是在各边的$\frac{1}{3}$处相交的两个全等的正三角形,设△ABC的边长为a,图中列出了长度均为$\frac{a}{3}$的若干个向量,求:
(1)与$\overrightarrow{GH}$相等的向量;
(2)与$\overrightarrow{GH}$共线的向量;
(3)与$\overrightarrow{EA}$平行的向量.

查看答案和解析>>

同步练习册答案