精英家教网 > 高中数学 > 题目详情

已知函数f(x)=Asin(ωx+φ),x∈R,(其中A>0,ω>0,-数学公式<φ<数学公式),其部分图象如图所示.
(1)求函数f(x)的解析式;
(2)已知横坐标分别为-1、1、5的三点M、N、P都在函数f(x)的图象上,求sin∠MNP的值.

解:(1)由图可知,最小正周期T=(3-1)×4=8,所以ω==
又∵当x=1时,f(x)有最大值为1,
∴f(1)=sin(+φ)=1,得+φ=+2kπ,k∈Z
∵-<φ<,∴取k=0,得φ=
所以函数的解析式为f(x)=sin(x+).
(2)∵f(-1)=0,f(1)=1且f(5)=sin(×5+)=-1.
∴三点坐标分别为M(-1,0),N(1,1),P(5,-1),
由两点的距离公式,得|MN|=,|PN|=2,|MP|=
∴根据余弦定理,得cos∠MNP==-
∵∠MNP∈(0,π)
∴sin∠MNP是正数,得sin∠MNP==
分析:(1)根据图象,可得函数的最小正周期T=8,结合周期公式得ω=.再根据f(1)=1是函数的最大值,列式可解出φ的值,得到函数f(x)的解析式;
(2)由(1)的解析式,得出M、N、P三点的坐标,结合两点的距离公式得到MN、PN、PM的长,用余弦定理算出cos∠MNP的值,最后用同角三角函数平方关系,可得sin∠MNP的值.
点评:本题给出函数y=Asin(ωx+φ)的部分图象,要我们确定确定其解析式,并求一个角的正弦.着重考查了三角函数的图象与性质、余弦定理和同角三角函数的基本关系等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案