精英家教网 > 高中数学 > 题目详情
17.若集合A={x|ax2+x+1=0}中只有一个元素,则a=(  )
A.4B.$\frac{1}{4}$C.0或$\frac{1}{4}$D.D、

分析 由集合A只有一个元素便可知道方程ax2+x+1=0只有一个解,a=0时显然该方程只有一个解,而a≠0时,需满足△=0,这样便可得出a的取值.

解答 解:对于方程ax2+x+1=0,①若a=0,则x=-1,∴A只有一个元素-1;
②若a≠0,则一元二次方程ax2+x+1=0只有一个解;
∴△=1-4a=0;
∴$a=\frac{1}{4}$;
∴a=0,或$\frac{1}{4}$.
故选C.

点评 考查描述法表示集合,一元二次方程只有一个解时,判别式△=0,不要漏了a=0的情况.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.若关于x的不等式(a2-a)•4x-2x-1<0在区间(-∞,1]上恒成立,则实数a的取值范围为(  )
A.(-2,$\frac{1}{4}$)B.(-∞,$\frac{1}{4}$)C.(-$\frac{1}{2}$,$\frac{3}{2}$)D.(-∞,6]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.复数z=(cosθ-1)+(sinθ+2)i(其中θ为参数)在复平面内对应的点的轨迹方程是(  )
A.(x-1)2+(y+2)2=1B.(x+1)2+(y+2)2=1C.(x+1)2+(y-2)2=1D.(x-1)2+(y-2)2=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设向量$\overrightarrow{a}$=(1,2),$\overrightarrow{a}$+$\overrightarrow{b}$=(0,3),则向量$\overrightarrow{c}$=(1,5)用$\overrightarrow{a}$,$\overrightarrow{b}$表示为(  )
A.$\overrightarrow{c}$=$\overrightarrow{a}$+$\overrightarrow{b}$B.$\overrightarrow{c}$=$\overrightarrow{a}$+2$\overrightarrow{b}$C.$\overrightarrow{c}$=2$\overrightarrow{a}$+$\overrightarrow{b}$D.$\overrightarrow{c}$=$\overrightarrow{a}$-$\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.等比数列{an}的前n项和为Sn,且a1+a3=$\frac{5}{4}$,S4=$\frac{15}{4}$,则Sn(  )
A.$\frac{{2}^{n-1}-1}{4}$B.$\frac{1-{2}^{n}}{4}$C.$\frac{{2}^{n}-1}{4}$D.2n-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}中,a1=t(t≠0且t≠1),a2=t2,且当x=t时,函数f(x)=$\frac{1}{2}$(an-an-1)x2-(an+1-an)x(n≥2,n∈N*)取得极值.
(1)求证:数列{an+1-an}是等比数列;
(2)求数列{an]的通项公式;
(3)当t=-$\sqrt{\frac{7}{10}}$时,若bn=anln|an|,数列{bn}中是否存在最大项?如果存在,说明是第几项,如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.直线:xsin30°+ycos150°+2=0的斜率是(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\sqrt{3}$C.$-\frac{{\sqrt{3}}}{3}$D.$-\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.若$cos(\frac{π}{4}+x)=\frac{3}{5}$,$\frac{7}{12}π<x<\frac{7}{4}$π.求:
①cosx的值;
②$\frac{{sin2x+2{{sin}^2}x}}{1-tanx}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.双曲线$\frac{x^2}{4}-\frac{y^2}{12}=1$的焦距为(  )
A.$2\sqrt{2}$B.4C.$4\sqrt{2}$D.8

查看答案和解析>>

同步练习册答案