| A. | 2$\sqrt{2}$ | B. | 4 | C. | 3$\sqrt{2}$ | D. | 6 |
分析 作出不等式组对应的平面区域,利用投影的定义,利用数形结合进行求解即可.
解答
解:作出不等式组对应的平面区域如图:(阴影部分),
区域内的点在直线x+y-2=0上的投影构成线段R′Q′,即SAB,
而R′Q′=RQ,
由$\left\{\begin{array}{l}{x-3y+4=0}\\{x+y=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=-1}\\{y=1}\end{array}\right.$,即Q(-1,1)
由$\left\{\begin{array}{l}{x=2}\\{x+y=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=2}\\{y=-2}\end{array}\right.$,即R(2,-2),
则|AB|=|QR|=$\sqrt{(-1-2)^{2}+(1+2)^{2}}$=$\sqrt{9+9}$=3$\sqrt{2}$,
故选:C
点评 本题主要考查线性规划的应用,作出不等式组对应的平面区域,利用投影的定义以及数形结合是解决本题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com