精英家教网 > 高中数学 > 题目详情
6.过点P(1,5)且与圆x2+y2-2x-4y-4=0相切的直线方程.

分析 先求出圆的标准方程,可得圆心坐标和半径,P(1,5)满足圆的方程,从而得到答案.

解答 解:圆:x2+y2-2x-4y-4=0,即(x-1)2+(y-2)2=9,表示以C(1,2)为圆心,半径等于3的圆.
P(1,5)满足圆的方程,所以过点P(1,5)且与圆x2+y2-2x-4y-4=0相切的直线方程为y=5.

点评 本题主要考查圆的标准方程,考查学生的计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.在边长为2的等边△ABC中,点D满足$\overrightarrow{AD}$=$\frac{1}{2}$$\overrightarrow{AB}$,点E满足$\overrightarrow{AE}$=λ$\overrightarrow{AC}$,λ∈[0,1],则$\overrightarrow{EB}$•$\overrightarrow{ED}$的取值范围为[$\frac{23}{16}$,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆的焦点分别为F1(-4,0),F2(4,0),离心率e=0.8.
(1)求椭圆的标准方程;
(2)在椭圆上是否存在点P,使$\overrightarrow{{F}_{1}P}$•$\overrightarrow{{F}_{2}P}$=0,若存在,求出坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=ex-ax(e为自然对数的底数).
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)定义:函数F(x)的定义域为D,若?x0∈D,使F(x0)=x0成立,则称x0为F(x)的不动点.
当a=1时,
(ⅰ)证明:函数y=$\frac{1}{f(x)}$(x>0)存在唯一的不动点x0,且x0∈(ln2,1);
(ⅱ)已知数列{an}满足a1=ln2,an+1=$\frac{1}{f({a}_{n})}$(n∈N*),求证:?n∈N*,$\frac{f({a}_{2n})-f({x}_{0})}{{a}_{2n}-{x}_{0}}$>f(x0)+x0-1,(其中x0为y=$\frac{1}{f(x)}$(x>0)的不动点).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知x,y∈R,i为虚数单位,若$\frac{x}{1+i}$=1-yi,则x+yi=(  )
A.2+iB.1+2iC.1-2iD.2-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知定义在R上的单调函数f(x)满足:对任意的x,都有f(f(x)-2x)=6,则不等式f(x+2)≥3f(-x)的解集为(  )
A.[log2$\frac{3}{2}$,+∞)B.(-∞,log2$\frac{3}{2}$]C.[log25,+∞)D.(-∞,log25]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.确定函数y=${x}^{\frac{1}{3}}$$(1-x)^{\frac{2}{3}}$的单调区间,并求出此函数的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在平面直角坐标系中,设向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-3,2),则$\overrightarrow{a}$.($\overrightarrow{a}$-$\overrightarrow{b}$)=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图给出了一个程序框图,其作用是输入x的值输出相应的y值,若要使输入的x值与输出的y值相等,则这样的x值的个数是3.

查看答案和解析>>

同步练习册答案