精英家教网 > 高中数学 > 题目详情
1.在平面直角坐标系中,设向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-3,2),则$\overrightarrow{a}$.($\overrightarrow{a}$-$\overrightarrow{b}$)=4.

分析 根据向量的坐标运算和数量积运算直接求出即可.

解答 解:由题意得,向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-3,2),
则$\overrightarrow{a}$•($\overrightarrow{a}$-$\overrightarrow{b}$)=(1,2)•(4,0)=4,
故答案为:4.

点评 本题考查向量的坐标运算和数量积运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知菱形ABCD的对角线AC长为1,则$\overrightarrow{AD}•\overrightarrow{AC}$=(  )
A.4B.2C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.过点P(1,5)且与圆x2+y2-2x-4y-4=0相切的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知f(x)=lnx-x2+x+2,g(x)=x3-(1+2e)x2+(m+1)x+2,(m∈R),讨论f(x)与g(x)交点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=e${\;}^{\frac{{x}^{2}}{a}}$-ax有且只有一个零点,则实数a的取值范围为(-∞,0)∪{$\root{3}{2e}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.过原点的直线l与双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右两支分别相交于A,B两点,F(-$\sqrt{3}$,0)是双曲线C的左焦点,若|FA|+|FB|=4,$\overrightarrow{FA}$$•\overrightarrow{FB}$=0.则双曲线C的方程=$\frac{{x}^{2}}{2}-{y}^{2}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图所示,在四棱锥中A-BCDE中,AE⊥面EBCD,且四边形EBCD是菱形,∠BED=120°,AE=BE=2,F是BC上的动点(不包括端点).
(1)当F是BC的中点时,求点F到面ACD的距离;
(2)当F在由B向C移动的过程中,能否存在一个位置使得二面角F-AD-C的余弦值为$\frac{15}{\sqrt{231}}$?若存在,求出BF的长,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,在△ABC中,点D是BC延长线上的点,$\overline{BC}$=3$\overline{CD}$,O在线段CD上且不与端点重合,若$\overrightarrow{AO}$=x$\overrightarrow{AB}$+(1-x)$\overrightarrow{AC}$,则x的取值范围是($-\frac{1}{3}$,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=2sin(2x+φ)(|φ|<$\frac{π}{2})$的图象过点$(0,\sqrt{3})$,则f(x)的图象的一个对称中心是(  )
A.$(-\frac{π}{3},0)$B.$(-\frac{π}{6},0)$C.$(\frac{π}{6},0)$D.$(\frac{π}{4},0)$

查看答案和解析>>

同步练习册答案