精英家教网 > 高中数学 > 题目详情
20.如图1,已知矩形ABCD中,AB=2,AD=2$\sqrt{2}$,E,F分别是AD,BC的中点,对角线BD与EF交于O点,沿EF将矩形ABFE折起,使平面ABFE与平面EFCD所成角为60°.在图2中:
(1)求证:BO⊥DO;
(2)求平面DOB分割三棱柱AED-BFC所得上部分的体积.

分析 (1)利用勾股定理分别求出OD,OB,BD,利用勾股定理的逆定理即可证出结论;
(2)截面上部分是一个四棱锥D-ABOE,底面为直角梯形,高为底面等边三角形的高.

解答 (1)证明:∵BF$\stackrel{∥}{=}$DE,∴△OED≌△OFB,
∴OE=OF=$\frac{1}{2}$AB=1,OD=OB=$\frac{1}{2}$BD=$\frac{1}{2}$$\sqrt{A{B}^{2}+A{D}^{2}}$=$\sqrt{3}$,连结BC,BD,
∵EF⊥BF,EF⊥CF,∴∠BFC为平面ABFE与平面EFCD所成角,
∴∠BFC=60°,又BF=BC,
∴△BFC是等边三角形,∴BC=BF=$\sqrt{2}$,
∴BD=$\sqrt{B{C}^{2}+C{D}^{2}}$=$\sqrt{6}$.
∴OD2+OB2=BD2
∴BO⊥DO.
(2)解:取AE的中点H,连结DH,则DH⊥平面ABFE,且DH=$\frac{\sqrt{3}}{2}AE$=$\frac{\sqrt{6}}{2}$.
∴VD-ABOE=$\frac{1}{3}$S梯形ABOE•DH=$\frac{1}{3}×\frac{1}{2}×(1+2)×\sqrt{2}×\frac{\sqrt{6}}{2}$=$\frac{\sqrt{3}}{2}$.

点评 本题考查了棱柱的结构特征,二面角的定义,棱锥的体积计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知甲在上班途中要经过两个路口,在第一个路口遇到红灯的概率为0.5,两个路口连续遇到红灯的概率为0.4,则甲在第一个路口遇到红灯的条件下,第二个路口遇到红灯的概率为(  )
A.0.6B.0.7C.0.8D.0.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1、F2,过点F1的直线l交椭圆于A、B两点,|AB|的最小值为3,且△ABF2的周长为8.
(Ⅰ)求椭圆的方程;
(Ⅱ)点A关于x轴的对称点为A′,直线A′B交x轴于点M,求△ABM面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知长方形ABCD中,AD=$\sqrt{2}$,AB=2,E为AB中点.将△ADE沿DE折起到△PDE,得到四棱锥P-BCDE,如图所示.
(1)若点M为PC中点,求证:BM∥平面PDE;
(2)当平面PDE⊥平面BCDE时,求四棱锥P-BCDE的体积;
(3)求证:DE⊥PC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图1,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AE=1,AB=2,CD=3,E,F分别为AB,CD上得点,以EF为轴将正方形ADFE向上翻折,使平面ADFE与平面BEFC垂直.如图2.
(1)若点P在线段BD上,使得FP⊥平面BDC,求FP的长;
(2)求多面体AEBDFC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.当n=3,x=2时,执行如图所示的程序框图,则输出的结果为42.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=5,则2$\overrightarrow{a}$-$\overrightarrow{b}$在$\overrightarrow{a}$方向上的投影为(  )
A.$\frac{3}{2}$B.2C.$\frac{5}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.执行如图的程序框图,若程序运行中输出的一组数是(x,-12),则x的值为(  )
 
A.27B.81C.243D.729

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某部门就“按现有的物价水平,抚养一个孩子要花多少钱”对100人进行了问卷调查,将调查结果制作成频率分布直方图如图,已知样本中数据在区间[30,35)上的人数与数据在区间[45,50)的人数之比为3:4.
(Ⅰ)求a,b的值;
(Ⅱ)(ⅰ)根据问卷调查结果估计:按现有的物价水平,抚养一个孩子平均要花多少钱;
(ⅱ)按分层抽样的方法在数据在区间[30,35)和[40,45)上的接受调查的市民中选取6人参加电视台举办的访谈,再从这6人中随机选取2人,求数据在[30,35)的市民中至少有一人被选中的概率.

查看答案和解析>>

同步练习册答案