精英家教网 > 高中数学 > 题目详情
12.已知向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=5,则2$\overrightarrow{a}$-$\overrightarrow{b}$在$\overrightarrow{a}$方向上的投影为(  )
A.$\frac{3}{2}$B.2C.$\frac{5}{2}$D.3

分析 根据平面向量数量积的定义与投影的定义,进行计算即可.

解答 解:∵向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,且|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=5,
∴(2$\overrightarrow{a}$-$\overrightarrow{b}$)•$\overrightarrow{a}$=2${\overrightarrow{a}}^{2}$-$\overrightarrow{b}$•$\overrightarrow{a}$=2×22-5×2×cos60°=3,
∴向量2$\overrightarrow{a}$-$\overrightarrow{b}$在$\overrightarrow{a}$方向上的投影为$\frac{\overrightarrow{a}•(2\overrightarrow{a}-\overrightarrow{b})}{|\overrightarrow{a}|}$=$\frac{3}{2}$.
故选:A.

点评 本题考查了平面向量数量积的定义与投影的计算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.点P是线段AB上的一个动点,AB=a,在AB同侧以AP、PB为边分别作等边△APM和△BPN,求线段MN的中点Q的轨迹.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.定义在R上的函数f(x)满足:f(x+4)=f(x),f(x)=$\left\{\begin{array}{l}{2x,x∈(-1.1]}\\{-{x}^{2}+2x+1,x∈(1,3]}\\{\;}\end{array}\right.$,当x∈[0,+∞)时,方程f(x)-4xa=0(a>0)有且只有3个不等实根,则实数a的值为(e是自然对数底数)(  )
A.$\frac{1}{{2}^{8}eln2}$B.$\frac{1}{{2}^{9}}$C.$\frac{e}{{2}^{8}ln2}$D.$\frac{e}{{2}^{9}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图1,已知矩形ABCD中,AB=2,AD=2$\sqrt{2}$,E,F分别是AD,BC的中点,对角线BD与EF交于O点,沿EF将矩形ABFE折起,使平面ABFE与平面EFCD所成角为60°.在图2中:
(1)求证:BO⊥DO;
(2)求平面DOB分割三棱柱AED-BFC所得上部分的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,三棱柱ABC-A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=2,BC=1,且AC⊥BC,点D,E,F分别为AC,AB,A1C1的中点.
(Ⅰ)求证:A1D⊥平面ABC;
(Ⅱ)求证:EF∥平面BB1C1C;
(Ⅲ)写出四棱锥A1-BB1C1C的体积.(只写出结论,不需要说明理由)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点作与x轴垂直的直线l,直线l与双曲线交于A,B两点,与双曲线的渐近线交于C,D两点,若3|AB|=2|CD|,则双曲线的离心率为$\frac{3\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,四边形PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=1,BC=2,又AC=1,∠ACB=120°,AB⊥PC,AM=2.
(Ⅰ)求证:平面PAC⊥平面ABC;
(Ⅱ)求三棱锥P-MAC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.正态分布ξ~N(a,32),且P(ξ<2a-3)=P(ξ>a+2),则a的值为(  )
A.$\frac{7}{3}$B.$\frac{4}{3}$C.1D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F作一条直线,当直线倾斜角为$\frac{π}{6}$时,直线与双曲线左、右两支各有一个交点;当直线倾斜角为$\frac{π}{3}$时,直线与双曲线右支有两个不同的交点,则双曲线离心率的取值范围为(  )
A.$({1,\frac{{2\sqrt{3}}}{3}})$B.$({\frac{{2\sqrt{3}}}{3},2})$C.$(1,\sqrt{3})$D.(1,2)

查看答案和解析>>

同步练习册答案