精英家教网 > 高中数学 > 题目详情
3.如图,四边形PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=1,BC=2,又AC=1,∠ACB=120°,AB⊥PC,AM=2.
(Ⅰ)求证:平面PAC⊥平面ABC;
(Ⅱ)求三棱锥P-MAC的体积.

分析 (Ⅰ)由已知得PC⊥CB,结合AB⊥PC,由线面垂直的判定得PC⊥平面ABC,再由面面垂直的判定得平面PAC⊥平面ABC;
(Ⅱ)在平面PCBM内,过M做MN⊥BC交BC于N,连结AN,则CN=PM=1,又PM∥BC,得四边形PMNC为平行四边形,得PC∥MN,且PC=MN,由(Ⅰ)得MN⊥平面ABC,然后求解三角形得$AN=\sqrt{3}$,进一步求解直角三角形得PC=MN=1.在平面ABC内,过A做AH⊥BC交BC于H,则AH⊥平面PMC,求解直角三角形得AH,然后利用等积法求得三棱锥P-MAC的体积.

解答 (Ⅰ)证明:由∠PCB=90°,得PC⊥CB,
又∵AB⊥PC,AB∩BC=B,AB,BC⊆平面ABC,
∴PC⊥平面ABC.
又PC?平面PAC,
∴平面PAC⊥平面ABC;
(Ⅱ) 解:在平面PCBM内,过M做MN⊥BC交BC于N,连结AN,则CN=PM=1,
又PM∥BC,得四边形PMNC为平行四边形,
∴PC∥MN,且PC=MN,
由(Ⅰ)得,PC⊥平面ABC,
∴MN⊥平面ABC,
在△ACN中,AN2=AC2+CN2-2AC•CNcos120°=3,即$AN=\sqrt{3}$.
又AM=2.
∴在Rt△AMN中,有PC=MN=1.
在平面ABC内,过A做AH⊥BC交BC于H,则AH⊥平面PMC,
∵AC=CN=1,∠ACB=120°,
∴∠ANC=30°.
∴在Rt△AHN中,有$AH=\frac{1}{2}AN=\frac{{\sqrt{3}}}{2}$,
而${S_{△PMC}}=\frac{1}{2}×1×1=\frac{1}{2}$,
∴${V_{P-MAC}}={V_{A-PMC}}=\frac{1}{3}×\frac{1}{2}×\frac{{\sqrt{3}}}{2}=\frac{{\sqrt{3}}}{12}$.

点评 本题考查平面与平面垂直的判定,训练了等积法求棱锥的体积,考查空间想象能力和思维能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-3,2),则$\overrightarrow{a}$•($\overrightarrow{a}$-$\overrightarrow{b}$)=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图1,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AE=1,AB=2,CD=3,E,F分别为AB,CD上得点,以EF为轴将正方形ADFE向上翻折,使平面ADFE与平面BEFC垂直.如图2.
(1)若点P在线段BD上,使得FP⊥平面BDC,求FP的长;
(2)求多面体AEBDFC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=5,则2$\overrightarrow{a}$-$\overrightarrow{b}$在$\overrightarrow{a}$方向上的投影为(  )
A.$\frac{3}{2}$B.2C.$\frac{5}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=ln(x+m)的图象与g(x)的图象关于x+y=0对称,且g(0)+g(-ln2)=1,则m=(  )
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.执行如图的程序框图,若程序运行中输出的一组数是(x,-12),则x的值为(  )
 
A.27B.81C.243D.729

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC中,角A,B,C所对的边分别为a,b,c,若sin(A+B)=$\frac{1}{3}$,a=3,c=4,则sinA=(  )
A.$\frac{2}{3}$B.$\frac{1}{4}$C.$\frac{3}{4}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.命题p:?x∈N,x3<x2;命题q:?a∈(0,1),函数f(x)=logax在其定义域内单调递减,则真命题是(  )
A.¬qB.p∧qC.¬p∧qD.p∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.执行如图所示的程序框图,若依次输入m=${0.6^{\frac{1}{2}}}$,n=0.6-2,p=${({\frac{1}{3}})^{\frac{1}{2}}}$,则输出的结果为(  )
A.${({\frac{1}{3}})^{\frac{1}{2}}}$B.${0.6^{\frac{1}{2}}}$C.0.6-2D.${0.6^{-\frac{3}{2}}}$

查看答案和解析>>

同步练习册答案