精英家教网 > 高中数学 > 题目详情
12.命题p:?x∈N,x3<x2;命题q:?a∈(0,1),函数f(x)=logax在其定义域内单调递减,则真命题是(  )
A.¬qB.p∧qC.¬p∧qD.p∧(¬q)

分析 命题p:如图所示,利用几何画板即可判断出真假.命题q:利用对数函数的单调性即可判断出真假.

解答 解:命题p:如图所示,可知:函数y=x3与y=x2有且只有两个交点,(0,0),(1,1),因此:不存在x∈N,x3<x2,命题p是假命题.
命题q:?a∈(0,1),函数f(x)=logax在其定义域内单调递减,是真命题.
只有¬p∧q是真命题.
故选:C.

点评 本题考查了函数的单调性、复合命题真假的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.定义在R上的函数f(x)满足:f(x+4)=f(x),f(x)=$\left\{\begin{array}{l}{2x,x∈(-1.1]}\\{-{x}^{2}+2x+1,x∈(1,3]}\\{\;}\end{array}\right.$,当x∈[0,+∞)时,方程f(x)-4xa=0(a>0)有且只有3个不等实根,则实数a的值为(e是自然对数底数)(  )
A.$\frac{1}{{2}^{8}eln2}$B.$\frac{1}{{2}^{9}}$C.$\frac{e}{{2}^{8}ln2}$D.$\frac{e}{{2}^{9}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,四边形PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=1,BC=2,又AC=1,∠ACB=120°,AB⊥PC,AM=2.
(Ⅰ)求证:平面PAC⊥平面ABC;
(Ⅱ)求三棱锥P-MAC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.正态分布ξ~N(a,32),且P(ξ<2a-3)=P(ξ>a+2),则a的值为(  )
A.$\frac{7}{3}$B.$\frac{4}{3}$C.1D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.执行如图所示的程序框图,若输入x=6,则输出y的值为-$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知k∈Z,$\overrightarrow{AB}$=(k,1),$\overrightarrow{BC}$=(k-2,-3),若|$\overrightarrow{AB}$|≤$\sqrt{17}$,则∠ABC是直角的概率是(  )
A.$\frac{4}{9}$B.$\frac{1}{3}$C.$\frac{2}{9}$D.$\frac{1}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.某几何体的三视图如图所示,正视图与侧视图完全相同,则该几何体的体积为$\frac{64-8π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F作一条直线,当直线倾斜角为$\frac{π}{6}$时,直线与双曲线左、右两支各有一个交点;当直线倾斜角为$\frac{π}{3}$时,直线与双曲线右支有两个不同的交点,则双曲线离心率的取值范围为(  )
A.$({1,\frac{{2\sqrt{3}}}{3}})$B.$({\frac{{2\sqrt{3}}}{3},2})$C.$(1,\sqrt{3})$D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠BAD=60°,AB=2,PA=3,PA⊥平面ABCD,E是PC的中点,F是AB的中点.
(Ⅰ)求证:BE∥平面PDF;
(Ⅱ)求三棱锥P-DEF的体积.

查看答案和解析>>

同步练习册答案