精英家教网 > 高中数学 > 题目详情
20.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F作一条直线,当直线倾斜角为$\frac{π}{6}$时,直线与双曲线左、右两支各有一个交点;当直线倾斜角为$\frac{π}{3}$时,直线与双曲线右支有两个不同的交点,则双曲线离心率的取值范围为(  )
A.$({1,\frac{{2\sqrt{3}}}{3}})$B.$({\frac{{2\sqrt{3}}}{3},2})$C.$(1,\sqrt{3})$D.(1,2)

分析 当直线倾斜角为$\frac{π}{6}$时,直线与双曲线左、右两支各有一个交点,可得$\frac{b}{a}$>$\frac{\sqrt{3}}{3}$,再利用离心率的计算公式即可得出e>$\frac{2\sqrt{3}}{3}$;再由当直线倾斜角为$\frac{π}{3}$时,直线与双曲线右支有两个不同的交点,则$\frac{b}{a}$<$\sqrt{3}$,求得e<2,进而得到所求范围.

解答 解:双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的渐近线方程为y=±$\frac{b}{a}$x,
由当直线倾斜角为$\frac{π}{6}$时,直线与双曲线左、右两支各有一个交点,可得$\frac{b}{a}$>$\frac{\sqrt{3}}{3}$,即b2>$\frac{1}{3}$a2,c2>$\frac{4}{3}$a2
可得e>$\frac{2\sqrt{3}}{3}$;
又当直线倾斜角为$\frac{π}{3}$时,直线与双曲线右支有两个不同的交点,则$\frac{b}{a}$<$\sqrt{3}$,即b2<3a2,c2<4a2
可得e<2.
综上可得,$\frac{2\sqrt{3}}{3}$<e<2.
故选:B.

点评 本题考查离心率的范围,注意运用渐近线的斜率与直线的斜率的关系,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=5,则2$\overrightarrow{a}$-$\overrightarrow{b}$在$\overrightarrow{a}$方向上的投影为(  )
A.$\frac{3}{2}$B.2C.$\frac{5}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.命题p:?x∈N,x3<x2;命题q:?a∈(0,1),函数f(x)=logax在其定义域内单调递减,则真命题是(  )
A.¬qB.p∧qC.¬p∧qD.p∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某部门就“按现有的物价水平,抚养一个孩子要花多少钱”对100人进行了问卷调查,将调查结果制作成频率分布直方图如图,已知样本中数据在区间[30,35)上的人数与数据在区间[45,50)的人数之比为3:4.
(Ⅰ)求a,b的值;
(Ⅱ)(ⅰ)根据问卷调查结果估计:按现有的物价水平,抚养一个孩子平均要花多少钱;
(ⅱ)按分层抽样的方法在数据在区间[30,35)和[40,45)上的接受调查的市民中选取6人参加电视台举办的访谈,再从这6人中随机选取2人,求数据在[30,35)的市民中至少有一人被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知a=${∫}_{\frac{1}{e}}^{e}$$\frac{1}{x}$dx,则二项式(1-$\frac{a}{x}$)5的展开式中x-3的系数为(  )
A.160B.80C.-80D.-160

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB⊥BC,AD⊥CD,PA=AD,△BCD是边长为$\sqrt{3}$的正三角形,AC与BD交于点O,点M是PB的中点.
(1)求证:OM∥平面PAD;
(2)求三棱锥M-PCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.执行如图所示的程序框图,若依次输入m=${0.6^{\frac{1}{2}}}$,n=0.6-2,p=${({\frac{1}{3}})^{\frac{1}{2}}}$,则输出的结果为(  )
A.${({\frac{1}{3}})^{\frac{1}{2}}}$B.${0.6^{\frac{1}{2}}}$C.0.6-2D.${0.6^{-\frac{3}{2}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.“c<0”是“方程x2+bx+c=0有根”的(  )
A.充要条件B.必要不充分条件
C.充分不必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知双曲线E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线方程为x-$\sqrt{2}$y=0,焦距为2$\sqrt{3}$.~
(1)求双曲线E的方程;
(2)若直线l:y=kx(k>0)与双曲线E交于A,B两点,且点A在第一象限,过点A作x轴的垂线,交x轴于点C,交双曲线E于另一点A1,连接BC交双曲线E于点D,求证:AD⊥OA1

查看答案和解析>>

同步练习册答案