精英家教网 > 高中数学 > 题目详情
15.已知a=${∫}_{\frac{1}{e}}^{e}$$\frac{1}{x}$dx,则二项式(1-$\frac{a}{x}$)5的展开式中x-3的系数为(  )
A.160B.80C.-80D.-160

分析 求定积分可得a的值,再根据二项式展开式的通项公式,求得展开式中x-3的系数.

解答 解:a=${∫}_{\frac{1}{e}}^{e}$$\frac{1}{x}$dx=2,则二项式(1-$\frac{a}{x}$)5 =(1-$\frac{2}{x}$)5 的展开式的通项公式为 Tr+1=${C}_{5}^{r}$•(-2)r•x-r
令-r=-3,求得r=3,可得展开式中x-3的系数为${C}_{5}^{3}$•(-2)3=-80,
故选:C.

点评 本题主要考查求定积分,二项式定理的应用,二项式展开式的通项公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.如图,三棱柱ABC-A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=2,BC=1,且AC⊥BC,点D,E,F分别为AC,AB,A1C1的中点.
(Ⅰ)求证:A1D⊥平面ABC;
(Ⅱ)求证:EF∥平面BB1C1C;
(Ⅲ)写出四棱锥A1-BB1C1C的体积.(只写出结论,不需要说明理由)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.执行如图所示的程序框图,若输入x=6,则输出y的值为-$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.某几何体的三视图如图所示,正视图与侧视图完全相同,则该几何体的体积为$\frac{64-8π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,在三棱锥P-ABC中,面PAC⊥面ABC,AB⊥BC,AB=BC=PA=PC=2,M,N为线段PC上的点,若MN=$\sqrt{2}$,则三棱锥A-MNB的体积为(  )
A.$\frac{2}{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{2}}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F作一条直线,当直线倾斜角为$\frac{π}{6}$时,直线与双曲线左、右两支各有一个交点;当直线倾斜角为$\frac{π}{3}$时,直线与双曲线右支有两个不同的交点,则双曲线离心率的取值范围为(  )
A.$({1,\frac{{2\sqrt{3}}}{3}})$B.$({\frac{{2\sqrt{3}}}{3},2})$C.$(1,\sqrt{3})$D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图所示,已知在四棱锥P-ABCD中,底面四边形ABCD是直角梯形,BC∥AD,BC⊥CD,AD=CD=2BC=4,△PAD是等边三角形,平面PAD⊥平面ABCD,E,F分别是PD,PC的中点,M为CD上一点.
(1)求证:平面BEF⊥平面PAD;
(2)求三棱锥M-EFB的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,椭圆的右焦点F到双曲线x2-y2=1的一条渐近线的距离为$\frac{\sqrt{2}}{2}$,已知过点F斜率为k1直线l交椭圆于A,B两点.
(1)求椭圆的方程;
(2)设线段AB的中点为M,直线OM(其中O为原点)的斜率为k2,判断k1•k2是否为定值,如果是,求出该值;如果不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),圆Q:(x-2)2+(y-$\sqrt{2}$)2=2的圆心Q在椭圆C上,点P(0,$\sqrt{2}$)到椭圆C的右焦点的距离为$\sqrt{6}$.
(1)求椭圆C的方程;
(2)过点P作互相垂直的两条直线l1,l2,且l1交椭圆C于A,B两点,直线l2交圆Q于C,D两点,且M为CD的中点,求△MAB的面积的取值范围.

查看答案和解析>>

同步练习册答案