精英家教网 > 高中数学 > 题目详情
11.设函数f(x)=|x+1|.
(1)解不等式f(x)<2x;
(2)若2f(x)+|x-a|>8对任意x∈R恒成立,求实数a的取值范围.

分析 (1)去掉绝对值号,得到关于x的不等式组,解出即可;(2)问题转化为f(x)+|x-a|>3对任意x∈R恒成立,即|a+1|>3,解出即可.

解答 解:(1)由f(x)<2x,得:|x+1|<2x,
则-2x<x+1<2x,
即$\left\{\begin{array}{l}{x+1<2x}\\{x+1>-2x}\end{array}\right.$,解得:x>1,
故不等式的解集是(1,+∞);
(2)∵f(x)+|x-a|=|x+1|+|x-a|≥|x+1-x+a|=|a+1|,
又2f(x)+|x-a|>8=23对任意x∈R恒成立,
即f(x)+|x-a|>3对任意x∈R恒成立,
∴|a+1|>3,解得:a>2或a<-4,
故a的范围是(-∞,-4)∪(2,+∞).

点评 本题考查了解绝对值不等式问题,考查绝对值的性质,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.下列函数为奇函数的是(  )
A.y=x2+1B.y=x3-2xC.y=2x+1D.y=2x4+3x2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\sqrt{3+2x-{x}^{2}}$的定义域为A,集合B={x|x2-2mx+m2-9≤0}.
(1)若A∩B=[2,3],求实数m的值;
(2)若?x1∈A,?x2∈(CRB),使x2=x1,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在“双11”促销活动中,某商场对11月11日9时到14时的销售额进行统计,其频率分布直方图如图所示,已知12时到14时的销售额为14万元,则9时到11时的销售额为(  )
A.3万元B.6万元C.8万元D.10万元

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在△ABC中,角A,B,C所对的边分别为a,b,c,$asinB=\sqrt{2}sinC,cosC=\frac{1}{3}$,△ABC的面积为4,则c=6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若复数z=$\frac{4-2ai}{1-i}$(a∈R)的实部为1,则z的虚部为(  )
A.1B.3C.-1D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=-x2-6x-3,g(x)=$\frac{{e}^{x}+ex}{ex}$,实数m,n满足m<n<0,若?x1∈[m,n],?x2∈(0,+∞),使得f(x1)=g(x2)成立,则n-m的最大值为(  )
A.4B.2$\sqrt{3}$C.4$\sqrt{3}$D.2$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=cosxsinx,给出下列四个结论:
①若f(x1)=-f(x2),则x1=-x2
②f(x)的最小正周期是2π;
③f(x)在区间[-$\frac{π}{4}$,$\frac{π}{4}$]上是增函数;
④f(x)的图象关于直线x=$\frac{3π}{4}$对称.
其中正确的结论是③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设命题p:实数x满足x2-4ax+3a2<0(a>0),命题q:实数x满足$\frac{x-3}{x-2}≤0$.
(1)若命题p的解集为P,命题q的解集为Q,当a=1时,求P∩Q;
(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

同步练习册答案