精英家教网 > 高中数学 > 题目详情
8.若函数f(x)=$\frac{4x}{{{x^2}+1}}$在区间[m,m+1]上是单调递增函数,则实数m的取值范围是[-1,0].

分析 可求导数得到$f′(x)=\frac{4(1-{x}^{2})}{({x}^{2}+1)^{2}}$,这样便可得出函数f(x)的单调递增区间,而由条件函数f(x)在区间[m,m+1]上单调递增便可得出关于m的不等式组,从而求出实数m的取值范围.

解答 解:$f′(x)=\frac{4({x}^{2}+1)-8{x}^{2}}{({x}^{2}+1)^{2}}=\frac{4(1-{x}^{2})}{({x}^{2}+1)^{2}}$;
∴-1≤x≤1时,f′(x)≥0;
即区间[-1,1]是f(x)的单调递增区间;
又f(x)在[m,m+1]上是单调递增函数;
∴$\left\{\begin{array}{l}{m≥-1}\\{m+1≤1}\end{array}\right.$;
∴-1≤m≤0;
即实数m的取值范围是[-1,0].
故答案为:[-1,0].

点评 考查商的导数的计算公式,用导数求函数单调区间的方法,一元二次不等式的解法,以及区间的概念及数轴表示区间的方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知A={x|x2-2mx+m2-1<0},B={x|$\frac{1}{2}$<x<$\frac{2}{3}$},若B?A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在复平面内,若复数z1和z2对应的点分别是A(-2,-1)和B(0,1),则$\frac{{z}_{2}}{{z}_{1}}$=(  )
A.-$\frac{1}{5}$-$\frac{2}{5}$iB.-$\frac{2}{5}$-$\frac{1}{5}$iC.$\frac{1}{5}$+$\frac{2}{5}$iD.$\frac{2}{5}$+$\frac{1}{5}$i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查,得到了如表的列联表:
喜爱打篮球不喜爱打篮球合计
男生20525
女生101525
合计302050
已知在全部50人中随机抽取1人,抽到喜爱打篮球的学生的概率为$\frac{3}{5}$.
(Ⅰ)补充完整上面的列联表,并判断是否有99.5%的把握认为喜爱打篮球与性别有关?
(Ⅱ)若采用分层抽样的方法从喜爱打篮球的学生中随机抽取3人,则男生和女生抽取的人数分别是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知向量|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2且$\overrightarrow{a}$•$\overrightarrow{b}$=0,又$\overrightarrow{c}$=$\overrightarrow{a}$+2$\overrightarrow{b}$,$\overrightarrow{d}$=m$\overrightarrow{a}$-n$\overrightarrow{b}$,$\overrightarrow{c}$∥$\overrightarrow{d}$,则$\frac{m}{n}$等于(  )
A.-$\frac{1}{2}$B.-1C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.等腰梯形ABCD中,AB∥CD,DC=AD=2,∠A=60°,则$\overrightarrow{AC}$•$\overrightarrow{BD}$=(  )
A.6B.-6C.-3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在平面直角坐标系中,O为坐标原点,A、B、C三点满足$\overrightarrow{OC}$=$\frac{1}{3}$$\overrightarrow{OA}$+$\frac{2}{3}$$\overrightarrow{OB}$.
(Ⅰ)求证:A、B、C三点共线;
(Ⅱ)已知A(1,cosx),B(1+cosx,cosx)(0≤x≤$\frac{π}{2}$),f(x)=$\overrightarrow{OA}$•$\overrightarrow{OC}$-(2m+$\frac{2}{3}$)•|$\overrightarrow{AB}$|的最小值为-$\frac{3}{2}$,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某市16个交通路段中,在早高峰期间与7个路段比较拥堵,现从中任意选10个路段,用X表示这10个路段中交通比较拥堵的路段数,则P(X=4)=(  )
A.$\frac{{C}_{7}^{4}{•C}_{9}^{6}}{{C}_{16}^{10}}$B.$\frac{{C}_{10}^{4}{•C}_{10}^{6}}{{C}_{16}^{10}}$
C.$\frac{{C}_{7}^{4}{•C}_{9}^{6}}{{C}_{16}^{7}}$D.$\frac{{C}_{16}^{7}{•C}_{16}^{3}}{{C}_{16}^{10}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在三棱锥A-BCD中,AD⊥平面BCD,CB=CD,AD=DB,P,Q分别在线段AB,AC上,AP=3PB,AQ=2QC,M是BD的中点.
(Ⅰ)证明:DQ∥平面CPM;
(Ⅱ)若二面角C-AB-D的大小为$\frac{π}{3}$,求∠BDC的正切值.

查看答案和解析>>

同步练习册答案