精英家教网 > 高中数学 > 题目详情
(1)求与直线3x+4y-7=0垂直,且与原点的距离为6的直线方程;
(2)求过A(1,2)和B(1,10)且与直线x-2y-1=0相切的圆的方程.
考点:圆的切线方程,直线的一般式方程与直线的垂直关系
专题:直线与圆
分析:(1)设与直线3x+4y-7=0垂直的直线方程为4x-3y+c=0,直线4x-3y+c=0与原点的距离为6,即
|c|
16+9
=6
,由此能求出直线方程.
(2)设圆心为(a,b),则半径为(a,b)到直线x-2y-1=0的距离,由此能求出圆的方程.
解答: 解:(1)设与直线3x+4y-7=0垂直的直线方程为4x-3y+c=0,
∵直线4x-3y+c=0与原点的距离为6,
|c|
16+9
=6
,解得c=±30,
∴与直线3x+4y-7=0垂直,且与原点的距离为6的直线方程为:
4x-3y+30=0或4x-3y-30=0,
(2)设圆心为(a,b),则半径为(a,b)到直线x-2y-1=0的距离,
即r=
|a-2b-1|
5

∴(a-1)2+(b-2)2=r2,(a-1)2+(b-10)2=r2
两个方程相减得,b=6,a=-7或3,∴r2=80或20
∴圆的方程是(x+7)2+(y-6)2=80或(x-3)2+(y-6)2=20.
点评:本题考查直线方程与圆的方程的求法,是中档题,解题时要认真审题,注意点到直线的距离公式的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=(nx-n+2)•ex,(其中n∈R,e为自然数的底数)
(Ⅰ)求f(x)在[0,1]的最大值;
(Ⅱ)若函数g(x)=n2x2-13nx-30(n>1,n∈N*),当x>0时,若2f′(x)>g(x)恒成立,求最大正整数n.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax,g(x)=lnx,其中a∈R.
(1)若函数F(x)=f(x)-g(x)有极值1,求a的值;
(2)若函数G(x)=
xf(x)
a
+ag(x)+
2
x
在区间[1,+∞)上为单调函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

为了解高一女生的身高情况,某中学随机抽取部分高一女生测量身高,所得数据整理后列出频率分布表如下:
组别频数频率
145.5-149.580.16
149.5-153.560.12
153.5-157.5140.28
157.5-161.5100.20
161.5-165.580.16
165.5-169.5mn
合计MN
(1)求出表中字母m、n、M、N所对应的数值;
(2)画出频率分布直方图;
(3)若该校高一女生有450人,试估计高一女生身高在149.5-165.5cm范围内有多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

公比为正的等比数列{an}的前n项和为Sn,且2a1+a2=a3,S3+2=a4
(1)求数列{an}通项公式;
(2)令bn=log2an,数列{
1
bnbn+1
}的前n项和为Tn,求使得Tn
2012
2013
成立的最小正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x+3
+
1
x+2

(1)求函数的定义域;
(2)求f(-3),f(
2
3
)的值;
(3)当a>0时,求f(a),f(a-1)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=lg(|x+3|+|x-7|)-a.
(1)当a=1时,解关于x的不等式f(x)>0;
(2)如果?x∈R,f(x)>0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=1,an+1-an+1=0,数列{bn}的前n项和为Sn,且满足Sn+bn=2,n∈N*
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设cn=anbn(n∈N*),求数列{cn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

某学校的生物实验室里有一个鱼缸,里面有6条鱼,其中4条黑色的和2条红色的,有位生物老师每周4天有课,每天上、下各一节课,每节课前从鱼缸中任取1条鱼在课上用,用后再放回鱼缸.
(1)求这位生物老师在一天中上、下午所捞的鱼为同色的概率;
(2)求这位生物老师一周中恰有两天上、下午所捞得的鱼为不同色的概率.

查看答案和解析>>

同步练习册答案