精英家教网 > 高中数学 > 题目详情
已知f(x)=
1
2
sinx+
3
2
cosx+1
(1)求f(x)的最小正周期和最大值;
(2)求f(x)的递增区间.
考点:三角函数的周期性及其求法,两角和与差的正弦函数,正弦函数的单调性,三角函数的最值
专题:三角函数的图像与性质
分析:(1)利用辅助角公式将函数进行化简即可求f(x)的最小正周期和最大值;
(2)根据三角函数的图象和性质即可求f(x)的递增区间.
解答: 解:(1)f(x)=
1
2
sinx+
3
2
cosx+1=sin(x+
π
3
)+1,
则f(x)的最小正周期T=
1
=2π
,最大值为1+1=2;
(2)由2kπ-
π
2
≤x+
π
3
≤2kπ+
π
2
,k∈Z,
即2kπ-
6
≤x≤2kπ+
π
6
,k∈Z
即f(x)的递增区间为[2kπ-
6
,2kπ+
π
6
].
点评:本题主要考查三角函数的图象和性质,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知曲线y=
1
x
,求曲线在点P(1,1)处的切线方程,求满足斜率为-
1
4
的曲线的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log2(2-x)=log2(x+2).
(1)求函数f(x)的定义域;
(2)判断f(x)的奇偶性并加以证明;
(3)若f(x)<log2(ax)在x∈[
1
2
,1]上恒成立,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知AF⊥平面ABCD,四边形ABEF为矩形,四边形ABCD为直角梯形,∠DAB=90°,AB∥CD,AD=AF=CD=2,AB=4.
(1)求证:AF∥平面BCE;
(2)求证:AC⊥平面BCE;
(3)求三棱锥E-BCF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(2x+
π
3
),
(1)求函数f(x)的最小正周期T,并求出函数f(x)的单调递增区间;
(2)求在[0,3π)内使f(x)取到最大值的所有x的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式组
x≥1
x+y-4≤0
kx-y≤0
所表示的平面区域是面积为1的直角三角形,则z=x-2y的最大值是(  )
A、-5B、-2C、-1D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin(α+
π
4
)=
1
2
,α∈(0,π),则cosα=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的部分图象如图所示.
(1)求函数f(x)的解析式;
(2)当x∈[-2,2]时,求函数y=f(x-1)+f(x+1)的最小值及取最小值时相应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四面体S-ABC的所有棱长都相等,它的俯视图如图所示,是一个边长为
2
的正方形;则四面体S-ABC外接球的表面积为(  )
A、6πB、4πC、8πD、3π

查看答案和解析>>

同步练习册答案