精英家教网 > 高中数学 > 题目详情

已知函数f(x)=ax3+bx2,当x=1时,有极大值3;
(Ⅰ)求a,b的值.
(Ⅱ)若点P是函数图象上的一点,横坐标为-1,求过P点的切线方程.

解:(I)y′=3ax2+2bx,当x=1时,y′|x=1=3a+2b=0,y|x=1=a+b=3,

(II):由(I)得:
f(x)=-6x3+9x2
∴P点的坐标为P(-1,15)
∵f′(x)=-18x2+18x,
设切点坐标为(t,-6t3+9t2),切线斜率为:f′(t)=-18t2+18t
则切线方程为y-(-6t3+9t2)=(-18t2+18t)(x-t),
∵切线过点P(-1,15),
∴15-(-6t3+9t2)=(-18t2+18t)(x+1),
化简得t3-3t2=0,∴t=0或t=3.
∴切线的方程:3x+y=0或24x-y-54=0.
分析:(I)求出y′,由x=1时,函数有极大值3,所以代入y和y′=0中得到两个关于a、b的方程,求出a、b即可;
(II)欲求出切线方程,只须求出其斜率即可,故先设切点坐标为(t,t3-3t),利用导数求出在x=t处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.
点评:考查学生利用导数研究函数极值的能力,以及会用待定系数法求函数解析式的能力.本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案