精英家教网 > 高中数学 > 题目详情
13.已知双曲线与椭圆$\frac{x^2}{36}+\frac{y^2}{27}=1$有相同的焦点,且虚轴的长为4.
(Ⅰ)求双曲线的方程;
(Ⅱ)求双曲线的渐近线方程.

分析 (Ⅰ)求出a,b,c,可求双曲线的方程;
(Ⅱ)利用(Ⅰ),即可求双曲线的渐近线方程.

解答 解:(Ⅰ)由已知得,焦点坐标为(3,0),…(2分)
∴c=3,
∵2b=4,∴$b=2,a=\sqrt{5}$
∴双曲线的方程为:$\frac{x^2}{5}-\frac{y^2}{4}=1$.…(5分)
(Ⅱ)∵焦点在x轴上,
∴双曲线的渐近线方程为$y=±\frac{b}{a}x=±\frac{{2\sqrt{5}}}{5}x$…(5分)

点评 本题考查双曲线的方程与性质,考查学生的计算能力,正确求出几何量是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.(1)已知$\overrightarrow{a}$,$\overrightarrow{b}$不共线,若λ1$\overrightarrow{a}$+$\overrightarrow{b}$=-$\overrightarrow{a}$+μ1$\overrightarrow{b}$,则λ1=-1,μ1=1.
(2)已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(2,3),$\overrightarrow{c}$=(3,4),若$\overrightarrow{c}$=λ$\overrightarrow{a}$+μ$\overrightarrow{b}$,则2λ+μ=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,已知直三棱柱ABC-A1B1C1的侧棱长是2,底面△ABC是等腰直角三角形,且∠ACB=90°,AC=2,E是AB的中点,D是AA1的中点,则三棱锥D-B1C1E的体积是(  )
A.1B.$\frac{1}{3}$C.$\frac{\sqrt{2}}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,AB=5,BC=7,AC=8,则$\overrightarrow{BA}$•$\overrightarrow{BC}$的值为(  )
A.5B.-5C.15D.-15

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.双曲线$\frac{y^2}{9}-{x^2}=1$的实轴长是6,焦点坐标是$(0,±\sqrt{10})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.为响应工业园区举行的万人体质监测活动,某高校招募了N名志愿服务者,将所有志愿者按年龄情况分为25~30,30~35,35~40,45~50,50~55六个层次,其频率分布直方图如图所示,已知35~45之间的志愿者共20人.
(1)计算N的值;
(2)从45~55之间的志愿者(其中共有4名女教师,其余全为男教师)中随机选取2名担任后勤保障工作,求恰好抽到1名女教师,1名男教师的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.计算:(1)$\frac{1}{{\sqrt{5}+2}}-{({\sqrt{3}-1})^0}-\sqrt{9-4\sqrt{5}}$
(2)$2\sqrt{3}×\root{6}{12}×\root{3}{{\frac{3}{2}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.曲线C:$\frac{x^2}{4-k}+\frac{y^2}{k-1}$=1表示双曲线,则k的取值范围为(  )
A.1<k<4B.k>4C.k<0D.k<1或k>4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若直线y=kx与双曲线$\frac{{x}^{2}}{6}$-$\frac{{y}^{2}}{2}$=1无公共点,则实数k的取值范围是k≥$\frac{\sqrt{3}}{3}$或k≤-$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

同步练习册答案