精英家教网 > 高中数学 > 题目详情
4.如图,已知直三棱柱ABC-A1B1C1的侧棱长是2,底面△ABC是等腰直角三角形,且∠ACB=90°,AC=2,E是AB的中点,D是AA1的中点,则三棱锥D-B1C1E的体积是(  )
A.1B.$\frac{1}{3}$C.$\frac{\sqrt{2}}{3}$D.$\frac{2}{3}$

分析 求出底面DB1E的面积,求出C1到底面的距离,然后求解棱锥的体积.

解答 解:直三棱柱ABC-A1B1C1的侧棱长是2,底面△ABC是等腰直角三角形,且∠ACB=90°,
过C1作C1G⊥A1B1于G,则C1G⊥平面DB1E,C1G=$\sqrt{2}$.
三棱锥D-B1C1E的体积就是C1-DB1E的体积.
${S}_{{△DB}_{1}E}$=${S}_{{AA}_{1}{B}_{1}B}$-${S}_{{△B}_{1}BF}$-S△AED-${S}_{{△DA}_{1}{B}_{1}}$=$2×2\sqrt{2}$$-\frac{1}{2}×2×\sqrt{2}$$-\frac{1}{2}×\sqrt{2}×1$$-\frac{1}{2}×2\sqrt{2}×1$=$\frac{3\sqrt{2}}{2}$.
三棱锥D-B1C1E的体积是:$\frac{1}{3}×\frac{3\sqrt{2}}{2}×\sqrt{2}$=1.
故选:A.

点评 本题主要考查空间线面关系、几何体的体积等知识,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.如图,已知棱长为1的正方体中ABCD-A1B1C1D1中,P,Q是面对角线A1C1上的两个不同动点,若PQ=1,则四面体BDPQ在该正方体六个面上的正投影的面积的和为2+2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求证:
(1)tan$\frac{α}{2}$=$\frac{sinα}{1+cosα}$=$\frac{1-cosα}{sinα}$;
(2)cosαsinβ=$\frac{1}{2}$[sin(α+β)-sin(α-β)];
(3)sinα-sinβ=2cos$\frac{α-β}{2}$sin$\frac{α-β}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设函数f(x)=$\left\{\begin{array}{l}{lo{g}_{4}({x}^{2}+1),x≤0}\\{sinx,0<x≤π}\end{array}\right.$,则不等式f(x)>$\frac{1}{2}$的解集为(-∞,-1)∪($\frac{π}{6}$,$\frac{5π}{6}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知A点坐标为(-1,0),B点坐标为(1,0),且动点M到A点的距离是4,线段MB的垂直平分线l交线段MA于点P.(1)求动点P的轨迹C方程;
(2)若P是曲线C上的点,求k=|PA|•|PB|的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.函数f(x)=$\frac{ax+b}{{1+{x^2}}}$是定义在(-1,1)上的奇函数,且$f(\frac{1}{2})=\frac{2}{5}$
(1)求f(x)的解析式;
(2)试判断f(x)在(-1,1)上的单调性,并利用函数单调性的定义证明;
(3)若f(t-1)+f(t)<0,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.五名男同学,三名女同学外出春游,平均分成两组,每组4人,则女同学不都在同一组的不同分法有(  )
A.30种B.65种C.35种D.70种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知双曲线与椭圆$\frac{x^2}{36}+\frac{y^2}{27}=1$有相同的焦点,且虚轴的长为4.
(Ⅰ)求双曲线的方程;
(Ⅱ)求双曲线的渐近线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.对于函数f1(x),f2(x),h(x),如果存在实数a,b使得h(x)=a•f1(x)+b•f2(x),那么称h(x)为f1(x),f2(x)的生成函数.
(1)函数f1(x)=x2-x,f2(x)=x2+x+1,h(x)=x2-x+1,h(x)是否为f1(x),f2(x)的生成函数?说明理由;
(2)设f1(x)=1-x,f2(x)=$\frac{{{x^2}-x+1}}{x-1}$,当a=b=1时生成函数h(x),求h(x)的对称中心(不必证明);
(3)设f1(x)=x,${f_2}(x)=\frac{1}{x-1}$(x≥2),取a=2,b>0,生成函数h(x),若函数h(x)的最小值是5,求实数b的值.

查看答案和解析>>

同步练习册答案