精英家教网 > 高中数学 > 题目详情
9.函数f(x)=$\frac{ax+b}{{1+{x^2}}}$是定义在(-1,1)上的奇函数,且$f(\frac{1}{2})=\frac{2}{5}$
(1)求f(x)的解析式;
(2)试判断f(x)在(-1,1)上的单调性,并利用函数单调性的定义证明;
(3)若f(t-1)+f(t)<0,求实数t的取值范围.

分析 (1)由f(-x)=-f(x),代入可求b,然后由且f($\frac{1}{2}$)=$\frac{2}{5}$可求a,进而可求函数解析式;
(2)利用函数单调性的定义进行证明;
(3)利用函数奇偶性和单调性的性质将不等式进行转化进行求解即可.

解答 解:(1)∵函数f(x)=$\frac{ax+b}{1+{x}^{2}}$是定义在(-1,1)上的奇函数,
∴f(-x)=-f(x),即 $\frac{-ax+b}{1+{x}^{2}}=-\frac{ax+b}{1+{x}^{2}}$,
∴-ax+b=-ax-b,∴b=0,
∵f($\frac{1}{2}$)=$\frac{2}{5}$,
∴$\frac{\frac{1}{2}a}{1+(\frac{1}{2})^{2}}=\frac{2}{5}$,解得a=1,
∴f(x)=$\frac{x}{1+{x}^{2}}$.
(2)证明:在区间(-1,1)上任取x1,x2,令-1<x1<x2<1,
∴f(x1)-f(x2)=$\frac{{x}_{1}}{1+{{x}_{1}}^{2}}$-$\frac{{x}_{2}}{1+{{x}_{2}}^{2}}$=$\frac{({x}_{1}-{x}_{2})(1-{x}_{1}{x}_{2})}{(1+{{x}_{1}}^{2})(1+{{x}_{2}}^{2})}$;
∵-1<x1<x2<1
∴x1-x2<0,1-x1x2>0,1+x12>0,1+x22>0
∴f(x1)-f(x2)<0即f(x1)<f(x2
故函数f(x)在区间(-1,1)上是增函数.
(3)∵f(x)是奇函数,
∴不等式f(t-1)+f(t)<0等价为f(t-1)<-f(t)=f(-t),
∵函数f(x)在区间(-1,1)上是增函数,
∴$\left\{\begin{array}{l}{-1<t<1}\\{-1<t-1<1}\\{t-1<-t}\end{array}\right.$,即$\left\{\begin{array}{l}{-1<t<1}\\{0<t<2}\\{t<\frac{1}{2}}\end{array}\right.$,解得0<t<$\frac{1}{2}$,
即不等式的解集为(0,$\frac{1}{2}$).

点评 本题考查函数奇偶性与单调性的性质应用,着重考查学生理解函数奇偶性与用定义证明单调性及解方程,解不等式组的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.若函数f(x)=$\frac{1}{x}$+2.则f(2x+1)=$\frac{1}{2x+1}$+2,x≠$-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.对于各数互不相等的正整数数组(i1,i2,i3,…in)(n是不小于2的正整数),如果在p>q时,有ip>iq,则称ip,iq是该数组的一个“好序”.一个数组中所有“好序”的个数称为该数组的“好序数”,例如,数组(1,3,4,2)中有好序“1,3”,“1,4”,“1,2”,“3,4”,其“好序数”等于4,若各数互不相等的正数数组(a1,a2,a3,a4,a5,a6)的“好序数”是2,则(a6,a5,a4,a3,a2,a1)的“好序数”是13.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知向量$\overrightarrow{{e}_{1}}$与$\overrightarrow{{e}_{2}}$不共线,x,y∈R,且有(3x-4y)$\overrightarrow{{e}_{1}}$+(2x-3y)$\overrightarrow{{e}_{2}}$=6$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$,则x-y的值为(  )
A.-3B.3C.0D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,已知直三棱柱ABC-A1B1C1的侧棱长是2,底面△ABC是等腰直角三角形,且∠ACB=90°,AC=2,E是AB的中点,D是AA1的中点,则三棱锥D-B1C1E的体积是(  )
A.1B.$\frac{1}{3}$C.$\frac{\sqrt{2}}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)对任意实数x均有f(x)=kf(x+2),其中常数k为负数,且f(x)在区间[0,2]有表达式f(x)=x(x-2)
(I)求出f(-1),f(2.5)的值;
(Ⅱ)若函数f(x)在区间[-2,2]的最大值与最小值分别为m,n,且m-n=3,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,AB=5,BC=7,AC=8,则$\overrightarrow{BA}$•$\overrightarrow{BC}$的值为(  )
A.5B.-5C.15D.-15

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.为响应工业园区举行的万人体质监测活动,某高校招募了N名志愿服务者,将所有志愿者按年龄情况分为25~30,30~35,35~40,45~50,50~55六个层次,其频率分布直方图如图所示,已知35~45之间的志愿者共20人.
(1)计算N的值;
(2)从45~55之间的志愿者(其中共有4名女教师,其余全为男教师)中随机选取2名担任后勤保障工作,求恰好抽到1名女教师,1名男教师的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.f(x)=$\frac{-{x}^{2}+x+k}{{e}^{x}}$有极值,则k的取值范围是(  )
A.k≥$\frac{5}{4}$B.k>-$\frac{5}{4}$C.k≤-$\frac{5}{4}$D.k<-$\frac{5}{4}$

查看答案和解析>>

同步练习册答案