精英家教网 > 高中数学 > 题目详情
3.若直线y=kx与双曲线$\frac{{x}^{2}}{6}$-$\frac{{y}^{2}}{2}$=1无公共点,则实数k的取值范围是k≥$\frac{\sqrt{3}}{3}$或k≤-$\frac{\sqrt{3}}{3}$.

分析 将直线方程代入双曲线方程,化为关于x的方程,利用方程的判别式,即可求得k的取值范围.

解答 解:由题意,直线y=kx代入双曲线$\frac{{x}^{2}}{6}$-$\frac{{y}^{2}}{2}$=1,整理得(1-3k2)x2=6
∵y=kx与双曲线$\frac{{x}^{2}}{6}$-$\frac{{y}^{2}}{2}$=1无公共点,
∴1-3k2≤0,解得k≥$\frac{\sqrt{3}}{3}$或k≤-$\frac{\sqrt{3}}{3}$.
故答案为:k≥$\frac{\sqrt{3}}{3}$或k≤-$\frac{\sqrt{3}}{3}$.

点评 本题考查直线与圆锥曲线的关系,解题的关键是将两曲线有交点的问题转化为方程有根的问题,这是研究两曲线有交点的问题时常用的转化方向.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知双曲线与椭圆$\frac{x^2}{36}+\frac{y^2}{27}=1$有相同的焦点,且虚轴的长为4.
(Ⅰ)求双曲线的方程;
(Ⅱ)求双曲线的渐近线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.对于函数f1(x),f2(x),h(x),如果存在实数a,b使得h(x)=a•f1(x)+b•f2(x),那么称h(x)为f1(x),f2(x)的生成函数.
(1)函数f1(x)=x2-x,f2(x)=x2+x+1,h(x)=x2-x+1,h(x)是否为f1(x),f2(x)的生成函数?说明理由;
(2)设f1(x)=1-x,f2(x)=$\frac{{{x^2}-x+1}}{x-1}$,当a=b=1时生成函数h(x),求h(x)的对称中心(不必证明);
(3)设f1(x)=x,${f_2}(x)=\frac{1}{x-1}$(x≥2),取a=2,b>0,生成函数h(x),若函数h(x)的最小值是5,求实数b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设$a={log_{\frac{1}{2}}}3,b={(\frac{1}{2})^{0.4}},c={3^{\frac{1}{2}}}$则a,b,c的大小关系是(  )
A.c>b>aB.c>a>bC.b>a>cD.a>b>c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,弧$\widehat{AEC}$是半径为a的半圆,AC为直径,点E为弧$\widehat{AC}$的中点,点B和点C为线段AD的三等分点,平面AEC外一点F满足FB=FD=$\sqrt{5}$a,FE=$\sqrt{6}$a.
(Ⅰ)证明:EB⊥FD;
(Ⅱ)已知点Q,R分别为线段FE,FB上的点,使得$\overrightarrow{FQ}$=λ$\overrightarrow{FE}$,$\overrightarrow{FR}$=λ$\overrightarrow{FB}$,求当RD最短时,平面BED与平面RQD所成二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.若双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a、b∈R+)与x=3的一个交点P与两焦点的距离分别是$\frac{13}{2}$和$\frac{5}{2}$,求a与b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知圆:(x-2)2+y2=3与双曲线:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1,(a>0,b>0)$的渐近线相切,则双曲线的离心率为(  )
A.$\frac{{2\sqrt{3}}}{3}$B.$\frac{4}{3}$C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知极坐标方程ρ=2cos(θ+$\frac{π}{3}$)和ρ=2cos(θ-$\frac{π}{3}$),求它的直角坐标方程,并求与之都外切的圆的圆心的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知递增的等差数列{an}的前三项和为6,前三项的积为6.
(Ⅰ)求等差数列{an}的通项公式;
(Ⅱ)设等差数列{an}的前n项和为Sn.记${b_n}=\frac{1}{S_n}$,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案