精英家教网 > 高中数学 > 题目详情
6.不等式|x-2|-|2x-1|>0的解集为(-1,1).

分析 通过讨论x的范围求出各个区间上的x的范围,取并集即可.

解答 解:x≥2时,x-2-2x+1>0,解得:x<-1,不合题意,
$\frac{1}{2}$<x<2时,2-x-2x+1>0,解得:x<1,
x≤$\frac{1}{2}$时,2-x+2x-1>0,解得:x>-1,
故不等式的解集是(-1,1);
故答案为:(-1,1).

点评 本题考查了解绝对值不等式问题,考查分类讨论思想,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.某车间为了规定工时定额,需要确定加工零件所花费的时间,为些作了四次试验,得到的数据如下表所示:
零件的个数x(个)2345
加工的时间y(小时)2.5344.5
(Ⅰ)求出y关于x的线性回归方程$\widehaty$=$\widehatbx$+$\widehata$,并在坐标系中画出回归直线;
(Ⅱ)试预测加工10个零件需要多少时间?b=$\frac{{\sum_{i=1}^n{({{x_1}-\overline x})({{y_1}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_1}-\overline x})}^2}}}}$=$\frac{{\sum_{i=1}^n{{x_1}{y_1}-n\overline{xy}}}}{{\sum_{i=1}^n{x_1^2-n{{\overline x}^2}}}}$,$\widehata$=$\overline y$-$\widehatb\overline x$,$\overline{x}$=$\frac{1}{n}\sum_{i=1}^n{x_1}$,$\overline y$=$\frac{1}{n}\sum_{i=1}^n{y_1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在△ABC中,角A,B,C所对的边分别为a,b,c,且asinAcosC+csinAcosA=$\frac{1}{3}$c,D为AC边上一点.
(1)若c=2b=4,S△BCD=$\frac{5}{3}$,求DC的长.
(2)若D是AC的中点,且$cosB=\frac{{2\sqrt{5}}}{5},BD=\sqrt{26}$,求△ABC的最短边的边长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数y=loga(x-3)-2过的定点是(4,-2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知等比数列{an}的首项为a1,公比为q(q≠1),则该数列的前n项和Sn=Sn=$\frac{{a}_{1}(1-{q}^{n})}{1-q}$(q≠1)或Sn=$\frac{{a}_{1}-{a}_{n}q}{1-q}$q(q≠1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知$f(x)=\left\{\begin{array}{l}{2^x},x≤0\\{log_{\frac{1}{2}}}x,x>0\end{array}\right.$,则f[f(4)]=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.对于定义域为D的函数y=f(x),如果存在区间[m,n]⊆D,同时满足:
①f(x)在[m,n]上是单调函数;
②当定义域是[m,n]时,f(x)的值域也是[m,n].
则称[m,n]是该函数的“等域区间”.
(1)求证:函数$g(x)=3-\frac{5}{x}$不存在“等域区间”;
(2)已知函数$h(x)=\frac{(2a+2)x-1}{{{a^2}x}}$(a∈R,a≠0)有“等域区间”[m,n],求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在平面直角坐标系中,已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-4,2),$\overrightarrow{c}$=(x,3),若(2$\overrightarrow{a}$+$\overrightarrow{b}$)∥$\overrightarrow{c}$,则x=(  )
A.-2B.-4C.-3D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设函数f(x)和g(x)分别是R上的奇函数和偶函数,则函数v(x)=f(x)|g(x)|的图象(  )
A.关于原点对称B.关于x轴对称C.关于y轴对称D.关于直线y=x对称

查看答案和解析>>

同步练习册答案