精英家教网 > 高中数学 > 题目详情
16.函数f(x)=2sin(ωx+φ)(?>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的图象如图所示.,若$\overrightarrow{PQ}$•$\overrightarrow{QR}$=$\frac{{π}^{2}}{16}$-4,为了得到函数f(x)的图象只要把函数y=2sinx图象上所有的点(  )
A.横坐标缩短到原来的$\frac{1}{2}$倍,纵坐标不变,再向左平移$\frac{π}{3}$个单位
B.横坐标缩短到原来的$\frac{1}{2}$倍,纵坐标不变,再向左平移$\frac{π}{6}$个单位
C.横坐标伸长到原来的2倍,纵坐标不变,再向左平移$\frac{π}{3}$个单位
D.横坐标伸长到原来的2倍,纵坐标不变,再向左平移$\frac{π}{6}$个单位

分析 利用直角三角形中的边角关系、余弦定理求出周期T,再由周期求出ω,由五点法作图求出φ的值,可得f(x)的解析式,再利用函数y=Asin(ωx+φ)的图象变换规律,得出结论.

解答 解:根据函数f(x)=2sin(ωx+φ)(?>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的图象,可得PQ=QR=$\sqrt{{(\frac{T}{4})}^{2}{+2}^{2}}$,
cos$\frac{∠PQR}{2}$=$\frac{2}{\sqrt{\frac{{T}^{2}}{16}+4}}$,∴cos∠PQR=2${cos}^{2}\frac{∠PQR}{2}$-1=$\frac{64{-T}^{2}}{64{+T}^{2}}$.
∵$\overrightarrow{PQ}$•$\overrightarrow{QR}$=PQ•QR•cos(π-∠PQR )=($\frac{{T}^{2}}{16}$+4)•(-$\frac{64{-T}^{2}}{64{+T}^{2}}$ )=$\frac{{π}^{2}}{16}$-4,∴T=π=$\frac{2π}{ω}$,∴ω=2.
再根据五点法作图可得2•$\frac{π}{12}$+φ=$\frac{π}{2}$,∴φ=$\frac{π}{3}$,f(x)=2sin(2x+$\frac{π}{3}$).
把函数y=2sinx图象上所有的点横坐标缩短到原来的$\frac{1}{2}$倍,纵坐标不变,可得函数y=2sin2x图象;
再向左平移$\frac{π}{6}$个单位,可得函数y=2sin2(x+$\frac{π}{6}$)=2sin(2x+$\frac{π}{3}$)的图象,
故选:B.

点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,利用直角三角形中的边角关系、余弦定理求出周期T,再由周期求出ω,由五点法作图求出φ的值,可得f(x)的解析式,函数y=Asin(ωx+φ)的图象变换规律,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.给出下列三个类比结论:
①“(ab)n=anbn”类比推理出“(a+b)n=an+bn”;
②已知直线a,b,c,若a∥b,b∥c,则a∥c.类比推理出:已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$,若$\overrightarrow{a}$∥$\overrightarrow{b}$,$\overrightarrow{b}$∥$\overrightarrow{c}$,则$\overrightarrow{a}$∥$\overrightarrow{c}$;
③同一平面内,直线a,b,c,若a⊥b,b⊥c,则a∥c.类比推理出:空间中,已知平面α,β,γ,若α⊥β,β⊥γ,则α∥γ.
其中结论正确的有0个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x3-2ax2+bx,
(Ⅰ)f(x)在点P(1,3)处的切线为y=x+2,求a,b的值;
(Ⅱ)在(Ⅰ)的条件下求f(x)在[-1,4]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,点A,B,C是椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1的三个顶点,D是OA的中点,P、Q是直线x=4上的两个动点.
(1)当点P的纵坐标为1时,求证:直线CD与直线BP的交点在椭圆上;
(2)设F1,F2分别是椭圆的左、右焦点,PF1⊥QF2,证明以线段PQ为直径的圆恒过定点,并求出该定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.复数$\frac{3i-2}{i-1}$(i是虚数单位)在复平面上对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设全集U=R,集合A={x|0<x≤3},B={x|x2<4},则集合∁U(A∪B)等于(  )
A.(-∞,-2]B.(-∞,0]∪[2,+∞)C.(3,+∞)D.(-∞,-2]∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合A={x|x2-1≤0,x∈Z},B={-2,-1,0,1,2},则A∩B子集的个数为(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.一个棱锥的三视图如图所示,则该棱锥的所有棱长之和等于4+4$\sqrt{3}$,棱锥的体积等于

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.一艘轮船在沿直线返回港口的途中,接到气象台的台风预报:台风中心位于轮船正西60km处,受影响的范围是半径长为20km的圆形区域.已知港口位于台风中心正北30km处,如果这艘轮船不改变航线,那么它是否会受到台风的影响?

查看答案和解析>>

同步练习册答案