【题目】某百货商店今年春节期间举行促销活动,规定消费达到一定标准的顾客可进行一次抽奖活动,随着抽奖活动的有效开展,参与抽奖活动的人数越来越多,该商店经理对春节前
天参加抽奖活动的人数进行统计,
表示第
天参加抽奖活动的人数,得到统计表格如下:
| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 5 | 8 | 8 | 10 | 14 | 15 | 17 |
(Ⅰ)经过进一步统计分析,发现
与
具有线性相关关系.请根据上表提供的数据,用最小二乘法求出
关于
的线性回归方程
;
(Ⅱ)该商店规定:若抽中“一等奖”,可领取
元购物券;抽中“二等奖”可领取
元购物券;抽中“谢谢惠顾”,则没有购物券.已知一次抽奖活动获得“一等奖”的概率为
,获得“二等”的概率为
.现有张、王两位先生参与了本次活动,且他们是否中奖相互独立,求此二人所获购物券总金额
的分布列及数学期望.
参考公式:
,
,
.
科目:高中数学 来源: 题型:
【题目】某二手车交易市场对某型号二手汽车的使用年数
与销售价格
(单位:万元/辆)进行整理,得到如下的对应数据:
使用年数 | 2 | 4 | 6 | 8 | 10 |
售价 | 16 | 13 | 9.5 | 7 | 4.5 |
(1)试求
关于
的回归直线方程;(参考公式:
,
.)
(2)已知每辆该型号汽车的收购价格为
万元,根据(1)中所求的回归方程,预测
为何值时,销售一辆该型号汽车所获得的利润
最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】祖暅原理也就是“等积原理”,它是由我国南北朝杰出的数学家祖冲之的儿子祖暅首先提出来的,祖暅原理的内容是:夹在两个平行平面间的两个几何体,被平行于这两个平行平面的平面所截,如果截得两个截面的面积总相等,那么这两个几何体的体积相等.已知,两个平行平面间有三个几何体,分别是三棱锥、四棱锥、圆锥(高度都为
),其中:三棱锥的底面是正三角形(边长为
),四棱锥的底面是有一个角为
的菱形(边长为
),圆锥的体积为
,现用平行于这两个平行平面的平面去截三个几何体,如果截得的三个截面的面积相等,那么,下列关系式正确的是( )
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
:
的焦点
与椭圆
:
的一个焦点重合,点
在抛物线上,过焦点
的直线
交抛物线于
、
两点.
(Ⅰ)求抛物线
的方程以及
的值;
(Ⅱ)记抛物线的准线
与
轴交于点
,试问是否存在常数
,使得
且
都成立?若存在,求出实数
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对某校高三年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数,根据此数据作出了频数与频率的统计表和频率分布直方图如下:
![]()
(1)求出表中M,p及图中a的值;
(2)若该校高三学生有240人,试估计高三学生参加社区服务的次数在区间(10,15)内的人数;
(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间[25,30)内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以原点
为极点,
轴的非负半轴为极轴建立极坐标系,已知曲线
的极坐标方程为:
,在平面直角坐标系
中,直线
的方程为
(
为参数).
(1)求曲线
和直线
的直角坐标方程;
(2)已知直线
交曲线
于
,
两点,求
,
两点的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
过点
,其参数方程为
(
为参数,
),以
为极点,
轴非负半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)求曲线
的普通方程和曲线
的直角坐标方程;
(2)求已知曲线
和曲线
交于
两点,且
,求实数
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,
、
分别为椭圆
的左、右顶点,点
满足
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设直线
经过点
且与
交于不同的两点
、
,试问:在
轴上是否存在点
,使得直线
与直线
的斜率的和为定值?若存在,请求出点
的坐标及定值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com