精英家教网 > 高中数学 > 题目详情
(本小题满分14分)
已知圆和圆,直线与圆相切于点;圆的圆心在射线上,圆过原点,且被直线截得的弦长为
(Ⅰ)求直线的方程;
(Ⅱ)求圆的方程.
(1)(2)
(Ⅰ)(法一)∵点在圆上,   ……2分
∴直线的方程为,即.  …………5分
(法二)当直线垂直轴时,不符合题意.    ……………2分
当直线轴不垂直时,设直线的方程为,即
则圆心到直线的距离,即:,解,…4分
∴直线的方程为.   …………………………5分
(Ⅱ)设圆,∵圆过原点,∴
∴圆的方程为.………………7分
∵圆被直线截得的弦长为,∴圆心到直线的距离:
.  ………………………………9分
整理得:,解得.…………………………10分
,∴.  ………………………………13分
∴圆. …………………14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
设椭圆其相应于焦点的准线方程为.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知过点倾斜角为的直线交椭圆两点,求证:
;
(Ⅲ)过点作两条互相垂直的直线分别交椭圆,求 的最小值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(14分)已知椭圆C的中心在坐标原点,焦点在x轴上,离心率.直线:与椭圆C相交于两点, 且.
(1)求椭圆C的方程;
(2)点P(,0),A、B为椭圆C上的动点,当时,求证:直线AB恒过一个定点.并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在椭圆中,F1,F2分别为椭圆的左、右焦点,B、D分别
为椭圆的左、右顶点,A为椭圆在第一象限内的一点,直线AF1交椭圆于另
一点C,交y轴于点E,且点F1、F2三等分线段BD.
(1)求的值;
(2)若四边形EBCF2为平行四边形,求点C的坐标;
(3)当时,求直线AC的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分、第3小题满分6分.
已知的顶点在椭圆上,在直线上,

(1)求边中点的轨迹方程;
(2)当边通过坐标原点时,求的面积;
(3)当,且斜边的长最大时,求所在直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题15分)已知椭圆的右焦点恰好是抛物线的焦点
是椭圆的右顶点.过点的直线交抛物线两点,满足
其中是坐标原点.
(1)求椭圆的方程;
(2)过椭圆的左顶点轴平行线,过点轴平行线,直线
相交于点.若是以为一条腰的等腰三角形,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直线与椭圆相交于A、B两点,且线段AB的中点,在直线上.(1)求此椭圆的离心率;(2)若椭圆的右焦点关于直线的对称点的在圆上,求此椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆的上焦点为,左、右顶点分别为,下顶点为,直线与直线交于点,若,则椭圆的离心率为___________。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在等腰梯形ABCD中,AB//CD,且AB=2AD,设,以A,B为焦点且过点D的双曲线的离心率为,以C,D为焦点且过点A的椭圆的离心率为,则                              (   )
                 
A.随着角度的增大,增大,为定值
B.随着角度的增大,减小,为定值
C.随着角度的增大,增大,也增大
C.随着角度的增大,减小,也减小

查看答案和解析>>

同步练习册答案