精英家教网 > 高中数学 > 题目详情
(本小题满分14分)
设椭圆其相应于焦点的准线方程为.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知过点倾斜角为的直线交椭圆两点,求证:
;
(Ⅲ)过点作两条互相垂直的直线分别交椭圆,求 的最小值
(1)椭圆的方程为;(2)同解析(3)取得最小值
(1)由题意得:


椭圆的方程为
(2)方法一:
由(1)知是椭圆的左焦点,离心率
为椭圆的左准线。则
轴交于点H(如图)
点A在椭圆上




同理

方法二:
时,记,则
将其代入方程  得
 ,则是此二次方程的两个根.


   ................(1)
代入(1)式
得      ........................(2)
时, 仍满足(2)式。

(3)设直线的倾斜角为,由于由(2)可得
   ,

时,取得最小值
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知椭圆C的中心在原点、焦点在轴上,椭圆C上的点到焦点的最大值为3,最小值为1.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若直线椭圆交于不同的两点M,N(M,N不是左、右顶点),且以MN为直径的圆经过椭圆的右顶点A.求证:直线过定点,并求出定点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知圆和圆,直线与圆相切于点;圆的圆心在射线上,圆过原点,且被直线截得的弦长为
(Ⅰ)求直线的方程;
(Ⅱ)求圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(13分)
在直角坐标系中,点M到点的距离之和是4,点M的轨迹是C与x轴的负半轴交于点A,不过点A的直线与轨迹C交于不同的两点P和Q.
(I)求轨迹C的方程;
(II)当时,求k与b的关系,并证明直线过定点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求椭圆为参数)的准线方程

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直角坐标平面内,已知点是平面内一动点,直线斜率之积为.
(Ⅰ)求动点的轨迹的方程;
(Ⅱ)过点作直线与轨迹交于两点,线段的中点为,求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点P在椭圆上,焦点为F1F2,且∠F1PF2=30°,求△F1PF2的面积.(8分)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

为椭圆上任一点(不是长轴顶点),过点的切线与过长轴顶点与长轴垂直的直线相交于点,求证以线段为直径的圆过这个椭圆的两个焦点

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知,焦点在y轴上的椭圆的标准方程是           

查看答案和解析>>

同步练习册答案