精英家教网 > 高中数学 > 题目详情
20.设函数f(x)=$\frac{2}{x}$+lnx,则f(x) 的单调递增区间为(  )
A.(0,+∞)B.(2,+∞)C.(0,2)D.(1,+∞)

分析 求出函数的导数,解关于导函数的不等式,求出函数的递增区间即可.

解答 解:f(x)的定义域是(0,+∞),
f′(x)=$\frac{1}{x}$-$\frac{2}{{x}^{2}}$=$\frac{x-2}{{x}^{2}}$,
令f′(x)>0,解得:x>2,
故f(x)在(2,+∞)递增,
故选:B.

点评 本题考查了函数的单调性问题,考查导数的应用,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.某工厂为了对新研发的产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组检测数据(xi,yi)(i=1,2,…,6)如表所示:
试销价格x(元)4567a9
产品销量y(件)b8483807568
已知变量x,y具有线性负相关关系,且$\sum_{i=1}^6{x_i}=39,\sum_{i=1}^6{y_i}=480$,现有甲、乙、丙三位同学通过计算求得其线性回归方程分别为:甲y=4x+54;乙y=-4x+106;丙y=-4.2x+105,其中有且仅有一位同学的计算结果是正确的.
(1)试判断谁的计算结果正确?并求出a,b的值;
(2)若由线性回归方程得到的估计数据与检测数据的误差不超过1,则该检测数据是“理想数据”.现从检测数据中随机抽取2个,求这两个检验数据均为“理想数据”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.曲线y=xln x在点(e,e)处的切线与直线x+ay=1垂直,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列函数在其定义域内为奇函数的是(  )
A.y=x+$\frac{1}{x}$B.y=xsin xC.y=|x|-1D.y=cos x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数y=$\frac{1}{x-2}$+$\frac{1}{\sqrt{x+1}}$的定义域是(-1,2)∪(2,+∞)(用区间表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知集合A={a,b},B={x|x∈A},C={x|x⊆A},试判断A、B、C之间的关系.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)是定义在[-1,1]上的减函数,且f(x-1)<f(1-3x),则x的取值范围是($\frac{1}{2}$,$\frac{2}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,两圆⊙O,⊙O′内切于点T,点P为外圆⊙O上任意一点,PM与内圆⊙O′切于点M.求证:PM:PT为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.下列说法中:
①若f(x)=ax2+(2a+b)x+2(其中x∈[2a-1,a+4])是偶函数,则实数b=2;
②f(x)=$\sqrt{2008-{x}^{2}}$+$\sqrt{{x}^{2}-2008}$既是奇函数又是偶函数;
③已知f(x)是定义在R上的奇函数,若当x∈[0,+∞)时,f(x)=x(1+x),则当x∈R时,f(x)=x(1+|x|);
④已知f(x)是定义在R上的不恒为零的函数,且对任意的x,y∈R都满足f(x•y)=x•f(y)+y•f(x),则f(x)是奇函数.
其中正确说法的序号是①②③④(注:把你认为是正确的序号都填上).

查看答案和解析>>

同步练习册答案