精英家教网 > 高中数学 > 题目详情
18.已知△ABC的重心G($\frac{13}{6}$,-2),AB中点D(-$\frac{5}{4}$,-1),BC中点E($\frac{11}{4}$,-4),则A、B、C三点坐标分别为(1,2)、B($-\frac{7}{2},-4$)、C(9,-4).

分析 分别设出A、B、C三点坐标,求出所用向量的坐标,然后利用三角形重心的性质得到向量的关系,由向量的坐标相等求得A、C的坐标,由中点坐标公式求出AC中点坐标,进一步由向量的坐标相等求得B的坐标.

解答 解:设A(x1,y1),B(x2,y2),C(x3,y3),
∵G为△ABC的重心,D为AB中点,E为BC中点,
∴$\overrightarrow{EA}=3\overrightarrow{EG}$,$\overrightarrow{DC}=3\overrightarrow{DG}$,
∵D(-$\frac{5}{4}$,-1),E($\frac{11}{4}$,-4),G($\frac{13}{6}$,-2),
∴$\overrightarrow{EA}=({x}_{1}-\frac{11}{4},{y}_{1}+4)$,$\overrightarrow{EG}=(-\frac{7}{12},2)$,$\overrightarrow{DC}=({x}_{3}+\frac{5}{4},{y}_{3}+1)$,$\overrightarrow{DG}=(\frac{41}{12},-1)$.
∴$\left\{\begin{array}{l}{{x}_{1}-\frac{11}{4}=-\frac{7}{4}}\\{{y}_{1}+4=6}\end{array}\right.$,解得:$\left\{\begin{array}{l}{{x}_{1}=1}\\{{y}_{1}=2}\end{array}\right.$,即A(1,2);
$\left\{\begin{array}{l}{{x}_{3}+\frac{5}{4}=\frac{41}{4}}\\{{y}_{3}+1=-3}\end{array}\right.$,解得:$\left\{\begin{array}{l}{{x}_{3}=9}\\{{y}_{3}=-4}\end{array}\right.$,即C(9,-4);
则AC中点F(5,-1),
∴$\overrightarrow{FB}=({x}_{2}-5,{y}_{2}+1)$,$\overrightarrow{FG}=(-\frac{17}{6},-1)$,
又$\overrightarrow{FB}=3\overrightarrow{FG}$,∴$\left\{\begin{array}{l}{{x}_{2}-5=-\frac{17}{2}}\\{{y}_{2}+1=-3}\end{array}\right.$,解得:$\left\{\begin{array}{l}{{x}_{2}=-\frac{7}{2}}\\{{y}_{2}=-4}\end{array}\right.$,即B($-\frac{7}{2},-4$).
∴A、B、C三点坐标分别为(1,2)、B($-\frac{7}{2},-4$)、C(9,-4).
故答案为:(1,2)、B($-\frac{7}{2},-4$)、C(9,-4).

点评 本题考查中点坐标公式的应用,考查了利用向量的坐标运算求点的坐标,熟记三角形重心的性质是关键,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.写出正偶数从小到大排成的数列,此数列的首项和第8项及前8项的和各是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知x>0,y>0,且$\frac{x}{2}$+$\frac{y}{5}$=1,则lgx+lgy的最大值为2lg5-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知在四边形ABCD中,$\overrightarrow{AB}$=$\overrightarrow{DC}$=(1,1),$\frac{1}{|\overrightarrow{BA}|}$$\overrightarrow{BA}$+$\frac{1}{|\overrightarrow{BC}|}$$\overrightarrow{BC}$=$\frac{3}{2|\overrightarrow{BD}|}$$\overrightarrow{BD}$,则四边形ABCD的面积为(  )
A.$\frac{\sqrt{13}}{8}$B.$\frac{3\sqrt{5}}{2}$C.$\frac{4\sqrt{26}}{3}$D.$\frac{3\sqrt{7}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.计算:cos36°cos72°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知y=sin(x+α)+cos(x+α)为奇函数,则α=α=kπ-$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)的定义域为[1,2],求函数g(x)=f(x2)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x-alnx(a∈R).
(1)当a=2时,求曲线f(x)在x=1处的切线方程;
(2)设函数h(x)=f(x)+$\frac{1+a}{x}$,求函数h(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求最值:y=t+$\frac{1}{t}$.

查看答案和解析>>

同步练习册答案