分析 首先分析题目已知y=sin(x+α)+cos(x+α)是奇函数,则由奇函数的性质得:在原点的函数值为0.可把函数化为标准型再求解,得到答案.
解答 解:因为y=sin(x+α)+cos(x+α)为奇函数,
所以y=sin(x+α)+cos(x+α)=$\sqrt{2}$sin(x+α+$\frac{π}{4}$)是奇函数,
则x=0时y=0 所以$\sqrt{2}$sin(α+$\frac{π}{4}$)=0,
所以α+$\frac{π}{4}$=kπ,
所以α=kπ-$\frac{π}{4}$,
故答案为:α=kπ-$\frac{π}{4}$.
点评 此题主要考查三角函数的奇偶性的问题,其中涉及到奇函数的基本性质:在原点的函数值为0.题目计算量小,属于基础题型.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com