精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程
在直角坐标系 中,直线 的参数方程为 为参数),以原点为极点, 轴正半轴为极轴建立极坐标系,圆 的极坐标方程为 .
(1)写出圆 的直角坐标方程;
(2) 为直线 上一动点,当 到圆心 的距离最小时,求 的直角坐标.

【答案】
(1)解:由 ,得 ,从而有

所以


(2)解:设 ,又

故当 时, 取得最小值,此时 点的坐标为


【解析】(1)将方程两边同时乘以,然后根据x2+y2,y=sin即可求解;(2)根据圆C的直角坐标方程写出圆心C的坐标,根据直线的参数方程可设出点P的坐标为(3+t,t),然后根据两点间距离公式写出即可求出的最小值及取得最小值时x的值.
【考点精析】根据题目的已知条件,利用直线的参数方程的相关知识可以得到问题的答案,需要掌握经过点,倾斜角为的直线的参数方程可表示为为参数).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设Sn是数列{an}的前n项和,且a1=﹣1, =Sn , 求数列{an}的前n项和Sn= , 通项公式an=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四边形是正方形, 都是等边三角形, 分别是线段的中点,分别以为折痕将四个等边三角形折起,使得四点重合于一点,得到一个四棱锥.对于下面四个结论:

为异面直线; 直线与直线所成的角为

平面 平面平面

其中正确结论的个数有(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

I)若a=1,求在区间[0,3]上的最大值和最小值;

II)解关于x的不等式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是对数函数.

(1) 若函数,讨论的单调性;

(2),不等式的解集非空,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足:

)求 的值.

)求证:数列是等比数列.

)令,如果对任意,都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数 ,(a>0).若对任意实数x1 , 都存在正数x2 , 使得g(x2)=f(x1)成立,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是公差不为零的等差数列,满足数列的通项公式为

1)求数列的通项公式;

2将数列,中的公共项按从小到大的顺序构成数列请直接写出数列的通项公式;

3是否存在正整数 ,使得成等差数列?若存在,求出的值;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

I)若a=1,求在区间[0,3]上的最大值和最小值;

II)解关于x的不等式

查看答案和解析>>

同步练习册答案