精英家教网 > 高中数学 > 题目详情
15.若A、B为两个独立事件,且P(A)=0.4,P(A+B)=0.7,则P(B)=0.5.

分析 根据公式P(A+B)=P(A)+P(B)-P(A∩B)和P(A∩B)=P(A)•P(B),即可求出P(B).

解答 解:∵A、B为两个独立事件,P(A+B)=P(A)+P(B)-P(A∩B)
∴0.7=0.4+P(B)-0.4P(B)
∴0.6P(B)=0.3
∴P(B)=0.5
故答案为:0.5.

点评 本题考查了两个独立事件的概率加法公式和概率乘法公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知f(x)是R上的奇函数,且当x∈(-∞,0]时,f(x)=-xlg(2m-x+$\frac{1}{2}$).当x>0时,不等式f(x)<0恒成立,则m的取值范围是(  )
A.(-∞,-1)B.(-1,1]C.[0,+∞)D.[-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,抛物线C的顶点为坐标原点,焦点F为圆x2+(y-1)2=1的圆心.
(Ⅰ)求抛物线C的方程;
(Ⅱ)直线y=kx+2交圆F于A,B两点,线段AB的中点为M,直线MF交抛物线C于P,Q两点,且|PQ|=16|AB|,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=mx-1-lnx.
(1)若f(x)≥0对?x∈(0,+∞)恒成立,求实数m的取值范围;
(2)求证:对?n∈N*,$\frac{n+1}{\root{n}{n!}}$<e均成立(其中e为自然对数的底数,e≈2.71828).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=x2-1,则f(1)=(  )
A.1B.0C.-1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在一辆汽车通行的道路上,顺次有4盏红,绿信号灯,若每盏灯以0.5的概率允许或禁止车辆向前通行,求汽车停止前进时通过的信号灯数的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.为促进某品牌彩电的销售,厂家设计了如下两套降价方案:
方案一:先降x%,再降x%;
方案二:一次性降价2x%(x>0).
问那套方案降价幅度大?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知焦点在x轴上的椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{9}$=1的离心率是e=$\frac{1}{2}$,则a的值为(  )
A.3$\sqrt{2}$B.$\sqrt{3}$C.2$\sqrt{3}$D.12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知△ABC三顶点均在双曲线$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{4}$=1上,三边AB、BC、AC所在的直线的斜率均存在且均不为0,其和为-1;又AB、BC、AC的中点分别为M、N、P,O为坐标原点,直线OM、ON、OP的斜率分别为k1,k2,k3且均不为0,则$\frac{1}{{k}_{1}}$+$\frac{1}{{k}_{2}}$+$\frac{1}{{k}_{3}}$=-$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案