分析 (Ⅰ)求出圆的圆心坐标,然后得到p=2,即可求抛物线方程.
(Ⅱ)求出圆心F到直线AB的距离,求出AB,通过直线PQ垂直于直线AB,求出PQ方程代入x2=4y,设点P,Q的坐标分别为(x1,y1),(x2,y2),通过韦达定理结合已知条件,即可求出k的值.
解答 解:(Ⅰ)由题意圆x2+(y-1)2=1的圆心(0,1),可得F(0,1),
∴p=2,故所求抛物线方程是x2=4y.…(4分)
(Ⅱ)圆心F到直线ABy=kx+2的距离是$\frac{1}{{\sqrt{1+{k^2}}}}$,所以$|{AB}|=2\sqrt{\frac{k^2}{{1+{k^2}}}}$.…(7分)
直线PQ垂直于直线AB,方程为x=-k(y-1).…(9分)
代入x2=4y,消去x可化为k2y2-(2k2+4)y+k2=0
设点P,Q的坐标分别为(x1,y1),(x2,y2),则${y_1}+{y_2}=\frac{{2{k^2}+4}}{k^2}$.…(11分)
又因为直线PQ经过焦点,所以$|{PQ}|={y_1}+{y_2}+2=\frac{{4{k^2}+4}}{k^2}$.…(13分)
由已知可得$\frac{{4{k^2}+4}}{k^2}=32\sqrt{\frac{k^2}{{1+{k^2}}}}$,得$\sqrt{\frac{k^2}{{1+{k^2}}}}=\frac{1}{2}$,故$k=±\frac{{\sqrt{3}}}{3}$.…(15分)
点评 本题考查直线与圆锥曲线方程的综合应用,抛物线方程的求法,圆的圆心坐标以及切割线定理的应用,考查分析问题解决问题的能力.
科目:高中数学 来源: 题型:解答题
| 科目 | 基本素质 | 专业技能 | 计算机 | 礼仪 |
| 合格的概率 | $\frac{2}{3}$ | $\frac{3}{4}$ | $\frac{1}{3}$ | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{4}$ | B. | $\frac{5}{3}$ | C. | $\frac{4}{3}$ | D. | $\frac{6}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|-3<x<-1} | B. | {x|-3<x<0} | C. | {x|x<-1} | D. | {x|x>0} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,e2] | B. | [e2,+∞) | C. | (2,e2] | D. | [2,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com